From 8b8cb1a8c08f6f666c8ca1ca8aa414b922164df2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E6=9D=8E=E6=98=8E=E6=9D=B0?= <560193@gree.com.cn> Date: Fri, 8 Mar 2019 16:03:21 +0800 Subject: [PATCH] Upload New File --- chat_function__analysis.py | 334 +++++++++++++++++++++++++++++++++++++ 1 file changed, 334 insertions(+) create mode 100644 chat_function__analysis.py diff --git a/chat_function__analysis.py b/chat_function__analysis.py new file mode 100644 index 0000000..5f1d7ba --- /dev/null +++ b/chat_function__analysis.py @@ -0,0 +1,334 @@ +import pandas as pd +import numpy as np +from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer +import matplotlib.pyplot as plt +from sklearn.manifold import MDS +from sklearn.metrics.pairwise import cosine_similarity +import random +from matplotlib.font_manager import FontProperties +from sklearn.cluster import KMeans +from sklearn import metrics +from collections import Counter +from scipy.cluster.hierarchy import ward, dendrogram +import bottom_function.normalization as normalization +import bottom_function.m_SQL as qb +import json +from flask import Flask +from flask import request +from flask_cors import CORS + + +class Culter: + + def __init__(self, start_time, end_time): + self.start_time = start_time + self.end_time = end_time + + csv_data = pd.DataFrame() + self.chat_data = pd.DataFrame() + tablename = "semantic_data_table" + db = qb.Schema(host="localhost", user="560193", password="jay560193", mysqlName="semantic_data_schema", + port="3306") + csv_data = db.getData(tableName=tablename, startTime=start_time, endTime=end_time) + self.chat_data = csv_data[(csv_data['domain'] == 'chat') & (csv_data['code'] == 0)] + + self.chat_data.drop_duplicates(subset=['query'], inplace=True) + self.chat_data.dropna(subset=['query'], inplace=True) + + self.out_data = '' # 写入分析结果 + self.feature_names = [] + self.f_sse = [] + self.feature_matrix = np.matrix([]) + + def build_feature_matrix(self, documents, feature_type, ngram_range, min_df, max_df): + + feature_type = feature_type.lower().strip() + if feature_type == 'binary': + vectorizer = CountVectorizer(binary=True, + max_df=max_df, ngram_range=ngram_range) + elif feature_type == 'frequency': + vectorizer = CountVectorizer(binary=False, min_df=min_df, + max_df=max_df, ngram_range=ngram_range) + elif feature_type == 'tfidf': + vectorizer = TfidfVectorizer(token_pattern=r"(?u)\b\w+\b", max_df=max_df) + else: + raise Exception("Wrong feature type entered. Possible values: 'binary', 'frequency', 'tfidf'") + + feature_matrix = vectorizer.fit_transform(documents).astype(float) + + return vectorizer, feature_matrix + + def feature_extraction_data(self): + + chat_one = self.chat_data['query'].tolist() + + norm_chat_one = normalization.normalize_corpus(chat_one, pos=False) + + # 提取 tf-idf 特征 + vectorizer, self.feature_matrix = self.build_feature_matrix(norm_chat_one, feature_type='tfidf', min_df=0.2, + max_df=0.90, + ngram_range=(1, 2)) + + # 查看特征数量) + self.out_data = '聚类分析结果:\n' + '**' * 30 + self.out_data = self.out_data + '\n特征数量:\n' + str(self.feature_matrix.shape) + + # 获取特征名字 + self.feature_names = vectorizer.get_feature_names() + + # 打印某些特征 + self.out_data = self.out_data + '\n部分特征:\n' + ', '.join(self.feature_names[:5]) + + def get_cluster_data(self, clustering_obj, m_data, feature_names, num_clusters, topn_features): + cluster_data = {} + + # 获取cluster的center + ordered_centroids = clustering_obj.cluster_centers_.argsort()[:, ::-1] + # 获取每个cluster的关键特征 + # 获取每个cluster的query + for cluster_num in range(num_clusters): + cluster_data[cluster_num] = {} + cluster_data[cluster_num]['cluster_num'] = cluster_num + key_features = [feature_names[index] + for index + in ordered_centroids[cluster_num, :topn_features]] + cluster_data[cluster_num]['key_features'] = key_features + + c_datas = m_data[m_data['Cluster'] == cluster_num]['query'].values.tolist() + cluster_data[cluster_num]['query'] = c_datas + + return cluster_data + + def print_cluster_data(self, cluster_data): + self.out_data = self.out_data + '\n\n聚类详细数据:\n' + + for cluster_num, cluster_details in cluster_data.items(): + self.out_data = self.out_data + '\nCluster {} details:\n'.format(cluster_num) + + self.out_data = self.out_data + '-' * 20 + self.out_data = self.out_data + '\nKey features:\n' + self.out_data = self.out_data + ', '.join(cluster_details['key_features']) + + self.out_data = self.out_data + '\ndata in this cluster:\n' + self.out_data = self.out_data + ', '.join(cluster_details['query']) + self.out_data = self.out_data + '\n' + '=' * 40 + + def plot_clusters(self, feature_matrix, cluster_data, m_data, plot_size): + def generate_random_color(): # generate random color for clusters + color = '#%06x' % random.randint(0, 0xFFFFFF) + return color + + # define markers for clusters + markers = ['o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd'] + # build cosine distance matrix + cosine_distance = 1 - cosine_similarity(feature_matrix) + # dimensionality reduction using MDS + mds = MDS(n_components=2, dissimilarity="precomputed", + random_state=1) + # get coordinates of clusters in new low-dimensional space + plot_positions = mds.fit_transform(cosine_distance) + x_pos, y_pos = plot_positions[:, 0], plot_positions[:, 1] + # build cluster plotting data + cluster_color_map = {} + cluster_name_map = {} + # print(cluster_data) + for cluster_num, cluster_details in cluster_data.items(): + # assign cluster features to unique label + cluster_color_map[cluster_num] = generate_random_color() + cluster_name_map[cluster_num] = ', '.join(cluster_details['key_features'][:5]).strip() + # map each unique cluster label with its coordinates and books + cluster_plot_frame = pd.DataFrame({'x': x_pos, + 'y': y_pos, + 'label': m_data['Cluster'].values.tolist(), + 'query': m_data['query'].values.tolist() + }) + grouped_plot_frame = cluster_plot_frame.groupby('label') + # set plot figure size and axes + + plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 + plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 + fig, ax = plt.subplots(figsize=plot_size) + ax.margins(0.05) + # plot each cluster using co-ordinates and titles + for cluster_num, cluster_frame in grouped_plot_frame: + marker = markers[cluster_num] if cluster_num < len(markers) \ + else np.random.choice(markers, size=1)[0] + ax.plot(cluster_frame['x'], cluster_frame['y'], + marker=marker, linestyle='', ms=12, + label=cluster_name_map[cluster_num], + color=cluster_color_map[cluster_num], mec='none') + ax.set_aspect('auto') + ax.tick_params(axis='x', which='both', bottom=False, top=False, + labelbottom='off') + ax.tick_params(axis='y', which='both', left=False, top=False, + labelleft=False) + fontP = FontProperties() + fontP.set_size(23) + ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.01), fancybox=True, + shadow=True, ncol=5, numpoints=1, prop=fontP) + # add labels as the film titles + for index in range(len(cluster_plot_frame)): + ax.text(cluster_plot_frame.ix[index]['x'], cluster_plot_frame.ix[index]['y'], + cluster_plot_frame.ix[index]['query'], size=20) + # show the plot + plt.title(self.start_time + ' to ' + self.end_time + 'chat data cluster point set') + path = '/roobo/soft/phpmyadmin/cluster_point.jpg' + plt.savefig(path) + return path + + def k_means(self, feature_matrix): + f_sse = [] + num_clusters = [] + for i in range(2, 21): + km = KMeans(n_clusters=i, max_iter=10000) + km.fit(feature_matrix) + clusters = km.labels_ + num_matrix = feature_matrix.todense() + sse = metrics.calinski_harabaz_score(num_matrix, clusters) + num_clusters.append(i) + f_sse.append(sse) + + pd_see = pd.Series(f_sse, index=num_clusters) + pct_see = pd_see.pct_change() + + fig, ax = plt.subplots() + ax.plot(num_clusters, f_sse, 'o-', c='orangered', label='clustering quality') + plt.legend(loc=2) + plt.xticks(num_clusters) + ax.set_xlabel("cluster number") + + ax.set_ylabel("coefficient") + + ax1 = ax.twinx() + ax1.plot(pct_see.values, 'o-', c='blue', label='gradient change') + ax1.set_ylabel("gradient") + plt.legend(loc=1) + + plt.title(self.start_time + " to " + self.end_time + " the analysis of clusters with different numbers") + path = '/roobo/soft/phpmyadmin/choice_num.jpg' + plt.savefig(path) + + # input_num = input('输入最优聚类数目:') + # best_num = int(input_num) + + self.f_sse = f_sse + return path + + def k_means_cluster(self, best_num): + + self.out_data = self.out_data + '\n' + "=" * 20 + self.out_data = self.out_data + "\n\n聚类效果分析:\n" + self.out_data = self.out_data + "\n聚类数目为:" + str(best_num) + + f_sse = self.f_sse + sse = f_sse[best_num] + km = KMeans(n_clusters=best_num, max_iter=10000) + km.fit(self.feature_matrix) + clusters = km.labels_ + self.chat_data['Cluster'] = clusters + + # 获取每个cluster的数量 + c = Counter(clusters) + + sort_c = sorted(c.items(), key=lambda c: c[0], reverse=False) + c.clear() + for key, value in sort_c: + c[key] = value + + self.out_data = self.out_data + '\nCalinski-Harabasz分数:' + str(sse) + self.out_data = self.out_data + '\n每个特征的数据量:\n' + self.out_data = self.out_data + (str(c.items())) + self.out_data = self.out_data + '\n' + "=" * 20 + cluster_data = self.get_cluster_data(clustering_obj=km, + m_data=self.chat_data, + feature_names=self.feature_names, + num_clusters=best_num, + topn_features=5) + + self.print_cluster_data(cluster_data) + + path = self.plot_clusters(feature_matrix=self.feature_matrix, cluster_data=cluster_data, m_data=self.chat_data, + plot_size=(40, 25)) + return path + + def ward_hierarchical_clustering(self, feature_matrix): + cosine_distance = 1 - cosine_similarity(feature_matrix) + linkage_matrix = ward(cosine_distance) + return linkage_matrix + + def plot_hierarchical_clusters(self, linkage_matrix, m_data, figure_size): + # set size + fig, ax = plt.subplots(figsize=figure_size) + m_titles = m_data['query'].values.tolist() + + # plot dendrogram + ax = dendrogram(linkage_matrix, orientation="left", labels=m_titles) + plt.tick_params(axis='x', + which='both', + bottom=False, + top=False, + labelbottom=False) + plt.tight_layout() + plt.title(self.start_time + ' to ' + self.end_time + 'chat data ward hierachical clusters') + path = '/roobo/soft/phpmyadmin/hierachical_clusters.jpg' + plt.savefig(path) + return path + + +app = Flask(__name__) +CORS(app, supports_credentials=True) + +data_cluster = Culter(start_time="2018-12-01 00:00:00", end_time="2018-12-02 00:00:00") + + +@app.route('/SPDAS/chat_function_analysis/choice1', methods=['POST']) +def choice(): + param = ({"time": "2018-12-01 00:00:00/2018-12-02 00:00:00"}) + return json.JSONEncoder().encode(param) + + +@app.route('/SPDAS/chat_function_analysis/choice2', methods=['POST']) +def choice_form(): + # 需要从request对象读取表单内容: + data = request.get_data() + json_re = json.loads(data) + + m_time = json_re['time'] + str_time = str(m_time) + m_time = str_time.split('/') + starttime = m_time[0] + endtime = m_time[1] + data_cluster = Culter(start_time=starttime, end_time=endtime) + data_cluster.feature_extraction_data() + image_path = data_cluster.k_means(data_cluster.feature_matrix) + path = ({"num_image": image_path}) + return json.JSONEncoder().encode(path) + + +@app.route('/SPDAS/chat_function_analysis/chat1', methods=['POST']) +def chat(): + param = ({"best_num": "2"}) + return json.JSONEncoder().encode(param) + + +@app.route('/SPDAS/chat_function_analysis/chat2', methods=['POST']) +def chat_form(): + # 需要从request对象读取表单内容: + data = request.get_data() + json_re = json.loads(data) + bestnum = json_re['best_num'] + image_path1 = data_cluster.k_means_cluster(best_num=bestnum) + + linkage_matrix = data_cluster.ward_hierarchical_clustering(data_cluster.feature_matrix) + + image_path2 = data_cluster.plot_hierarchical_clusters(linkage_matrix=linkage_matrix, m_data=data_cluster.chat_data, + figure_size=(16, 14)) + with open("/roobo/soft/phpmyadmin/chat_function_data.txt", 'w') as file: + file.writelines(data_cluster.out_data) + + path = ({"cluster_point": image_path1, "ward_image": image_path2}) + return json.JSONEncoder().encode(path) + + +if __name__ == '__main__': + app.run(debug=True, host='10.7.19.129', port=5000) -- GitLab