// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package chacha20 import ( "encoding/binary" "encoding/hex" "fmt" "math/rand" "testing" ) func TestCore(t *testing.T) { // This is just a smoke test that checks the example from // https://tools.ietf.org/html/rfc7539#section-2.3.2. The // chacha20poly1305 package contains much more extensive tests of this // code. var key [32]byte for i := range key { key[i] = byte(i) } var input [16]byte input[0] = 1 input[7] = 9 input[11] = 0x4a var out [64]byte XORKeyStream(out[:], out[:], &input, &key) const expected = "10f1e7e4d13b5915500fdd1fa32071c4c7d1f4c733c068030422aa9ac3d46c4ed2826446079faa0914c2d705d98b02a2b5129cd1de164eb9cbd083e8a2503c4e" if result := hex.EncodeToString(out[:]); result != expected { t.Errorf("wanted %x but got %x", expected, result) } } // Run the test cases with the input and output in different buffers. func TestNoOverlap(t *testing.T) { for _, c := range testVectors { s := New(c.key, c.nonce) input, err := hex.DecodeString(c.input) if err != nil { t.Fatalf("cannot decode input %#v: %v", c.input, err) } output := make([]byte, c.length) s.XORKeyStream(output, input) got := hex.EncodeToString(output) if got != c.output { t.Errorf("length=%v: got %#v, want %#v", c.length, got, c.output) } } } // Run the test cases with the input and output overlapping entirely. func TestOverlap(t *testing.T) { for _, c := range testVectors { s := New(c.key, c.nonce) data, err := hex.DecodeString(c.input) if err != nil { t.Fatalf("cannot decode input %#v: %v", c.input, err) } s.XORKeyStream(data, data) got := hex.EncodeToString(data) if got != c.output { t.Errorf("length=%v: got %#v, want %#v", c.length, got, c.output) } } } // Run the test cases with various source and destination offsets. func TestUnaligned(t *testing.T) { const max = 8 // max offset (+1) to test for _, c := range testVectors { input := make([]byte, c.length+max) output := make([]byte, c.length+max) for i := 0; i < max; i++ { // input offsets for j := 0; j < max; j++ { // output offsets s := New(c.key, c.nonce) input := input[i : i+c.length] output := output[j : j+c.length] data, err := hex.DecodeString(c.input) if err != nil { t.Fatalf("cannot decode input %#v: %v", c.input, err) } copy(input, data) s.XORKeyStream(output, input) got := hex.EncodeToString(output) if got != c.output { t.Errorf("length=%v: got %#v, want %#v", c.length, got, c.output) } } } } } // Run the test cases by calling XORKeyStream multiple times. func TestStep(t *testing.T) { // wide range of step sizes to try and hit edge cases steps := [...]int{1, 3, 4, 7, 8, 17, 24, 30, 64, 256} rnd := rand.New(rand.NewSource(123)) for _, c := range testVectors { s := New(c.key, c.nonce) input, err := hex.DecodeString(c.input) if err != nil { t.Fatalf("cannot decode input %#v: %v", c.input, err) } output := make([]byte, c.length) // step through the buffers i, step := 0, steps[rnd.Intn(len(steps))] for i+step < c.length { s.XORKeyStream(output[i:i+step], input[i:i+step]) if i+step < c.length && output[i+step] != 0 { t.Errorf("length=%v, i=%v, step=%v: output overwritten", c.length, i, step) } i += step step = steps[rnd.Intn(len(steps))] } // finish the encryption s.XORKeyStream(output[i:], input[i:]) got := hex.EncodeToString(output) if got != c.output { t.Errorf("length=%v: got %#v, want %#v", c.length, got, c.output) } } } // Test that Advance() discards bytes until a block boundary is hit. func TestAdvance(t *testing.T) { for _, c := range testVectors { for i := 0; i < 63; i++ { s := New(c.key, c.nonce) z := New(c.key, c.nonce) input, err := hex.DecodeString(c.input) if err != nil { t.Fatalf("cannot decode input %#v: %v", c.input, err) } zeros, discard := make([]byte, 64), make([]byte, 64) so, zo := make([]byte, c.length), make([]byte, c.length) for j := 0; j < c.length; j += 64 { lim := j + i if lim > c.length { lim = c.length } s.XORKeyStream(so[j:lim], input[j:lim]) // calling s.Advance() multiple times should have no effect for k := 0; k < i%3+1; k++ { s.Advance() } z.XORKeyStream(zo[j:lim], input[j:lim]) if lim < c.length { end := 64 - i if c.length-lim < end { end = c.length - lim } z.XORKeyStream(discard[:], zeros[:end]) } } got := hex.EncodeToString(so) want := hex.EncodeToString(zo) if got != want { t.Errorf("length=%v: got %#v, want %#v", c.length, got, want) } } } } func BenchmarkChaCha20(b *testing.B) { sizes := []int{32, 63, 64, 256, 1024, 1350, 65536} for _, size := range sizes { s := size b.Run(fmt.Sprint(s), func(b *testing.B) { k := [32]byte{} c := [16]byte{} src := make([]byte, s) dst := make([]byte, s) b.SetBytes(int64(s)) b.ResetTimer() for i := 0; i < b.N; i++ { XORKeyStream(dst, src, &c, &k) } }) } } func TestHChaCha20(t *testing.T) { // See draft-paragon-paseto-rfc-00 ยง7.2.1. key := []byte{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f} nonce := []byte{0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x4a, 0x00, 0x00, 0x00, 0x00, 0x31, 0x41, 0x59, 0x27} expected := []byte{0x82, 0x41, 0x3b, 0x42, 0x27, 0xb2, 0x7b, 0xfe, 0xd3, 0x0e, 0x42, 0x50, 0x8a, 0x87, 0x7d, 0x73, 0xa0, 0xf9, 0xe4, 0xd5, 0x8a, 0x74, 0xa8, 0x53, 0xc1, 0x2e, 0xc4, 0x13, 0x26, 0xd3, 0xec, 0xdc, } result := HChaCha20(&[8]uint32{ binary.LittleEndian.Uint32(key[0:4]), binary.LittleEndian.Uint32(key[4:8]), binary.LittleEndian.Uint32(key[8:12]), binary.LittleEndian.Uint32(key[12:16]), binary.LittleEndian.Uint32(key[16:20]), binary.LittleEndian.Uint32(key[20:24]), binary.LittleEndian.Uint32(key[24:28]), binary.LittleEndian.Uint32(key[28:32]), }, &[4]uint32{ binary.LittleEndian.Uint32(nonce[0:4]), binary.LittleEndian.Uint32(nonce[4:8]), binary.LittleEndian.Uint32(nonce[8:12]), binary.LittleEndian.Uint32(nonce[12:16]), }) for i := 0; i < 8; i++ { want := binary.LittleEndian.Uint32(expected[i*4 : (i+1)*4]) if got := result[i]; got != want { t.Errorf("word %d incorrect: want 0x%x, got 0x%x", i, want, got) } } }