Commit befca049 authored by 李明杰's avatar 李明杰

Delete chat_function__analysis.py

parent 8b8cb1a8
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
import matplotlib.pyplot as plt
from sklearn.manifold import MDS
from sklearn.metrics.pairwise import cosine_similarity
import random
from matplotlib.font_manager import FontProperties
from sklearn.cluster import KMeans
from sklearn import metrics
from collections import Counter
from scipy.cluster.hierarchy import ward, dendrogram
import bottom_function.normalization as normalization
import bottom_function.m_SQL as qb
import json
from flask import Flask
from flask import request
from flask_cors import CORS
class Culter:
def __init__(self, start_time, end_time):
self.start_time = start_time
self.end_time = end_time
csv_data = pd.DataFrame()
self.chat_data = pd.DataFrame()
tablename = "semantic_data_table"
db = qb.Schema(host="localhost", user="560193", password="jay560193", mysqlName="semantic_data_schema",
port="3306")
csv_data = db.getData(tableName=tablename, startTime=start_time, endTime=end_time)
self.chat_data = csv_data[(csv_data['domain'] == 'chat') & (csv_data['code'] == 0)]
self.chat_data.drop_duplicates(subset=['query'], inplace=True)
self.chat_data.dropna(subset=['query'], inplace=True)
self.out_data = '' # 写入分析结果
self.feature_names = []
self.f_sse = []
self.feature_matrix = np.matrix([])
def build_feature_matrix(self, documents, feature_type, ngram_range, min_df, max_df):
feature_type = feature_type.lower().strip()
if feature_type == 'binary':
vectorizer = CountVectorizer(binary=True,
max_df=max_df, ngram_range=ngram_range)
elif feature_type == 'frequency':
vectorizer = CountVectorizer(binary=False, min_df=min_df,
max_df=max_df, ngram_range=ngram_range)
elif feature_type == 'tfidf':
vectorizer = TfidfVectorizer(token_pattern=r"(?u)\b\w+\b", max_df=max_df)
else:
raise Exception("Wrong feature type entered. Possible values: 'binary', 'frequency', 'tfidf'")
feature_matrix = vectorizer.fit_transform(documents).astype(float)
return vectorizer, feature_matrix
def feature_extraction_data(self):
chat_one = self.chat_data['query'].tolist()
norm_chat_one = normalization.normalize_corpus(chat_one, pos=False)
# 提取 tf-idf 特征
vectorizer, self.feature_matrix = self.build_feature_matrix(norm_chat_one, feature_type='tfidf', min_df=0.2,
max_df=0.90,
ngram_range=(1, 2))
# 查看特征数量)
self.out_data = '聚类分析结果:\n' + '**' * 30
self.out_data = self.out_data + '\n特征数量:\n' + str(self.feature_matrix.shape)
# 获取特征名字
self.feature_names = vectorizer.get_feature_names()
# 打印某些特征
self.out_data = self.out_data + '\n部分特征:\n' + ', '.join(self.feature_names[:5])
def get_cluster_data(self, clustering_obj, m_data, feature_names, num_clusters, topn_features):
cluster_data = {}
# 获取cluster的center
ordered_centroids = clustering_obj.cluster_centers_.argsort()[:, ::-1]
# 获取每个cluster的关键特征
# 获取每个cluster的query
for cluster_num in range(num_clusters):
cluster_data[cluster_num] = {}
cluster_data[cluster_num]['cluster_num'] = cluster_num
key_features = [feature_names[index]
for index
in ordered_centroids[cluster_num, :topn_features]]
cluster_data[cluster_num]['key_features'] = key_features
c_datas = m_data[m_data['Cluster'] == cluster_num]['query'].values.tolist()
cluster_data[cluster_num]['query'] = c_datas
return cluster_data
def print_cluster_data(self, cluster_data):
self.out_data = self.out_data + '\n\n聚类详细数据:\n'
for cluster_num, cluster_details in cluster_data.items():
self.out_data = self.out_data + '\nCluster {} details:\n'.format(cluster_num)
self.out_data = self.out_data + '-' * 20
self.out_data = self.out_data + '\nKey features:\n'
self.out_data = self.out_data + ', '.join(cluster_details['key_features'])
self.out_data = self.out_data + '\ndata in this cluster:\n'
self.out_data = self.out_data + ', '.join(cluster_details['query'])
self.out_data = self.out_data + '\n' + '=' * 40
def plot_clusters(self, feature_matrix, cluster_data, m_data, plot_size):
def generate_random_color(): # generate random color for clusters
color = '#%06x' % random.randint(0, 0xFFFFFF)
return color
# define markers for clusters
markers = ['o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd']
# build cosine distance matrix
cosine_distance = 1 - cosine_similarity(feature_matrix)
# dimensionality reduction using MDS
mds = MDS(n_components=2, dissimilarity="precomputed",
random_state=1)
# get coordinates of clusters in new low-dimensional space
plot_positions = mds.fit_transform(cosine_distance)
x_pos, y_pos = plot_positions[:, 0], plot_positions[:, 1]
# build cluster plotting data
cluster_color_map = {}
cluster_name_map = {}
# print(cluster_data)
for cluster_num, cluster_details in cluster_data.items():
# assign cluster features to unique label
cluster_color_map[cluster_num] = generate_random_color()
cluster_name_map[cluster_num] = ', '.join(cluster_details['key_features'][:5]).strip()
# map each unique cluster label with its coordinates and books
cluster_plot_frame = pd.DataFrame({'x': x_pos,
'y': y_pos,
'label': m_data['Cluster'].values.tolist(),
'query': m_data['query'].values.tolist()
})
grouped_plot_frame = cluster_plot_frame.groupby('label')
# set plot figure size and axes
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
fig, ax = plt.subplots(figsize=plot_size)
ax.margins(0.05)
# plot each cluster using co-ordinates and titles
for cluster_num, cluster_frame in grouped_plot_frame:
marker = markers[cluster_num] if cluster_num < len(markers) \
else np.random.choice(markers, size=1)[0]
ax.plot(cluster_frame['x'], cluster_frame['y'],
marker=marker, linestyle='', ms=12,
label=cluster_name_map[cluster_num],
color=cluster_color_map[cluster_num], mec='none')
ax.set_aspect('auto')
ax.tick_params(axis='x', which='both', bottom=False, top=False,
labelbottom='off')
ax.tick_params(axis='y', which='both', left=False, top=False,
labelleft=False)
fontP = FontProperties()
fontP.set_size(23)
ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.01), fancybox=True,
shadow=True, ncol=5, numpoints=1, prop=fontP)
# add labels as the film titles
for index in range(len(cluster_plot_frame)):
ax.text(cluster_plot_frame.ix[index]['x'], cluster_plot_frame.ix[index]['y'],
cluster_plot_frame.ix[index]['query'], size=20)
# show the plot
plt.title(self.start_time + ' to ' + self.end_time + 'chat data cluster point set')
path = '/roobo/soft/phpmyadmin/cluster_point.jpg'
plt.savefig(path)
return path
def k_means(self, feature_matrix):
f_sse = []
num_clusters = []
for i in range(2, 21):
km = KMeans(n_clusters=i, max_iter=10000)
km.fit(feature_matrix)
clusters = km.labels_
num_matrix = feature_matrix.todense()
sse = metrics.calinski_harabaz_score(num_matrix, clusters)
num_clusters.append(i)
f_sse.append(sse)
pd_see = pd.Series(f_sse, index=num_clusters)
pct_see = pd_see.pct_change()
fig, ax = plt.subplots()
ax.plot(num_clusters, f_sse, 'o-', c='orangered', label='clustering quality')
plt.legend(loc=2)
plt.xticks(num_clusters)
ax.set_xlabel("cluster number")
ax.set_ylabel("coefficient")
ax1 = ax.twinx()
ax1.plot(pct_see.values, 'o-', c='blue', label='gradient change')
ax1.set_ylabel("gradient")
plt.legend(loc=1)
plt.title(self.start_time + " to " + self.end_time + " the analysis of clusters with different numbers")
path = '/roobo/soft/phpmyadmin/choice_num.jpg'
plt.savefig(path)
# input_num = input('输入最优聚类数目:')
# best_num = int(input_num)
self.f_sse = f_sse
return path
def k_means_cluster(self, best_num):
self.out_data = self.out_data + '\n' + "=" * 20
self.out_data = self.out_data + "\n\n聚类效果分析:\n"
self.out_data = self.out_data + "\n聚类数目为:" + str(best_num)
f_sse = self.f_sse
sse = f_sse[best_num]
km = KMeans(n_clusters=best_num, max_iter=10000)
km.fit(self.feature_matrix)
clusters = km.labels_
self.chat_data['Cluster'] = clusters
# 获取每个cluster的数量
c = Counter(clusters)
sort_c = sorted(c.items(), key=lambda c: c[0], reverse=False)
c.clear()
for key, value in sort_c:
c[key] = value
self.out_data = self.out_data + '\nCalinski-Harabasz分数:' + str(sse)
self.out_data = self.out_data + '\n每个特征的数据量:\n'
self.out_data = self.out_data + (str(c.items()))
self.out_data = self.out_data + '\n' + "=" * 20
cluster_data = self.get_cluster_data(clustering_obj=km,
m_data=self.chat_data,
feature_names=self.feature_names,
num_clusters=best_num,
topn_features=5)
self.print_cluster_data(cluster_data)
path = self.plot_clusters(feature_matrix=self.feature_matrix, cluster_data=cluster_data, m_data=self.chat_data,
plot_size=(40, 25))
return path
def ward_hierarchical_clustering(self, feature_matrix):
cosine_distance = 1 - cosine_similarity(feature_matrix)
linkage_matrix = ward(cosine_distance)
return linkage_matrix
def plot_hierarchical_clusters(self, linkage_matrix, m_data, figure_size):
# set size
fig, ax = plt.subplots(figsize=figure_size)
m_titles = m_data['query'].values.tolist()
# plot dendrogram
ax = dendrogram(linkage_matrix, orientation="left", labels=m_titles)
plt.tick_params(axis='x',
which='both',
bottom=False,
top=False,
labelbottom=False)
plt.tight_layout()
plt.title(self.start_time + ' to ' + self.end_time + 'chat data ward hierachical clusters')
path = '/roobo/soft/phpmyadmin/hierachical_clusters.jpg'
plt.savefig(path)
return path
app = Flask(__name__)
CORS(app, supports_credentials=True)
data_cluster = Culter(start_time="2018-12-01 00:00:00", end_time="2018-12-02 00:00:00")
@app.route('/SPDAS/chat_function_analysis/choice1', methods=['POST'])
def choice():
param = ({"time": "2018-12-01 00:00:00/2018-12-02 00:00:00"})
return json.JSONEncoder().encode(param)
@app.route('/SPDAS/chat_function_analysis/choice2', methods=['POST'])
def choice_form():
# 需要从request对象读取表单内容:
data = request.get_data()
json_re = json.loads(data)
m_time = json_re['time']
str_time = str(m_time)
m_time = str_time.split('/')
starttime = m_time[0]
endtime = m_time[1]
data_cluster = Culter(start_time=starttime, end_time=endtime)
data_cluster.feature_extraction_data()
image_path = data_cluster.k_means(data_cluster.feature_matrix)
path = ({"num_image": image_path})
return json.JSONEncoder().encode(path)
@app.route('/SPDAS/chat_function_analysis/chat1', methods=['POST'])
def chat():
param = ({"best_num": "2"})
return json.JSONEncoder().encode(param)
@app.route('/SPDAS/chat_function_analysis/chat2', methods=['POST'])
def chat_form():
# 需要从request对象读取表单内容:
data = request.get_data()
json_re = json.loads(data)
bestnum = json_re['best_num']
image_path1 = data_cluster.k_means_cluster(best_num=bestnum)
linkage_matrix = data_cluster.ward_hierarchical_clustering(data_cluster.feature_matrix)
image_path2 = data_cluster.plot_hierarchical_clusters(linkage_matrix=linkage_matrix, m_data=data_cluster.chat_data,
figure_size=(16, 14))
with open("/roobo/soft/phpmyadmin/chat_function_data.txt", 'w') as file:
file.writelines(data_cluster.out_data)
path = ({"cluster_point": image_path1, "ward_image": image_path2})
return json.JSONEncoder().encode(path)
if __name__ == '__main__':
app.run(debug=True, host='10.7.19.129', port=5000)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment