bn256.go 9.7 KB
Newer Older
zhangweiwei's avatar
init  
zhangweiwei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package bn256 implements a particular bilinear group.
//
// Bilinear groups are the basis of many of the new cryptographic protocols
// that have been proposed over the past decade. They consist of a triplet of
// groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ
// (where gₓ is a generator of the respective group). That function is called
// a pairing function.
//
// This package specifically implements the Optimal Ate pairing over a 256-bit
// Barreto-Naehrig curve as described in
// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
// with the implementation described in that paper.
//
// (This package previously claimed to operate at a 128-bit security level.
// However, recent improvements in attacks mean that is no longer true. See
// https://moderncrypto.org/mail-archive/curves/2016/000740.html.)
package bn256 // import "golang.org/x/crypto/bn256"

import (
	"crypto/rand"
	"io"
	"math/big"
)

// BUG(agl): this implementation is not constant time.
// TODO(agl): keep GF(p²) elements in Mongomery form.

// G1 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G1 struct {
	p *curvePoint
}

// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
func RandomG1(r io.Reader) (*big.Int, *G1, error) {
	var k *big.Int
	var err error

	for {
		k, err = rand.Int(r, Order)
		if err != nil {
			return nil, nil, err
		}
		if k.Sign() > 0 {
			break
		}
	}

	return k, new(G1).ScalarBaseMult(k), nil
}

func (e *G1) String() string {
	return "bn256.G1" + e.p.String()
}

// ScalarBaseMult sets e to g*k where g is the generator of the group and
// then returns e.
func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
	if e.p == nil {
		e.p = newCurvePoint(nil)
	}
	e.p.Mul(curveGen, k, new(bnPool))
	return e
}

// ScalarMult sets e to a*k and then returns e.
func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
	if e.p == nil {
		e.p = newCurvePoint(nil)
	}
	e.p.Mul(a.p, k, new(bnPool))
	return e
}

// Add sets e to a+b and then returns e.
// BUG(agl): this function is not complete: a==b fails.
func (e *G1) Add(a, b *G1) *G1 {
	if e.p == nil {
		e.p = newCurvePoint(nil)
	}
	e.p.Add(a.p, b.p, new(bnPool))
	return e
}

// Neg sets e to -a and then returns e.
func (e *G1) Neg(a *G1) *G1 {
	if e.p == nil {
		e.p = newCurvePoint(nil)
	}
	e.p.Negative(a.p)
	return e
}

// Marshal converts n to a byte slice.
func (e *G1) Marshal() []byte {
	// Each value is a 256-bit number.
	const numBytes = 256 / 8

	if e.p.IsInfinity() {
		return make([]byte, numBytes*2)
	}

	e.p.MakeAffine(nil)

	xBytes := new(big.Int).Mod(e.p.x, p).Bytes()
	yBytes := new(big.Int).Mod(e.p.y, p).Bytes()

	ret := make([]byte, numBytes*2)
	copy(ret[1*numBytes-len(xBytes):], xBytes)
	copy(ret[2*numBytes-len(yBytes):], yBytes)

	return ret
}

// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G1) Unmarshal(m []byte) (*G1, bool) {
	// Each value is a 256-bit number.
	const numBytes = 256 / 8

	if len(m) != 2*numBytes {
		return nil, false
	}

	if e.p == nil {
		e.p = newCurvePoint(nil)
	}

	e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
	e.p.y.SetBytes(m[1*numBytes : 2*numBytes])

	if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
		// This is the point at infinity.
		e.p.y.SetInt64(1)
		e.p.z.SetInt64(0)
		e.p.t.SetInt64(0)
	} else {
		e.p.z.SetInt64(1)
		e.p.t.SetInt64(1)

		if !e.p.IsOnCurve() {
			return nil, false
		}
	}

	return e, true
}

// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 struct {
	p *twistPoint
}

// RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r.
func RandomG2(r io.Reader) (*big.Int, *G2, error) {
	var k *big.Int
	var err error

	for {
		k, err = rand.Int(r, Order)
		if err != nil {
			return nil, nil, err
		}
		if k.Sign() > 0 {
			break
		}
	}

	return k, new(G2).ScalarBaseMult(k), nil
}

func (e *G2) String() string {
	return "bn256.G2" + e.p.String()
}

// ScalarBaseMult sets e to g*k where g is the generator of the group and
// then returns out.
func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
	if e.p == nil {
		e.p = newTwistPoint(nil)
	}
	e.p.Mul(twistGen, k, new(bnPool))
	return e
}

// ScalarMult sets e to a*k and then returns e.
func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
	if e.p == nil {
		e.p = newTwistPoint(nil)
	}
	e.p.Mul(a.p, k, new(bnPool))
	return e
}

// Add sets e to a+b and then returns e.
// BUG(agl): this function is not complete: a==b fails.
func (e *G2) Add(a, b *G2) *G2 {
	if e.p == nil {
		e.p = newTwistPoint(nil)
	}
	e.p.Add(a.p, b.p, new(bnPool))
	return e
}

// Marshal converts n into a byte slice.
func (n *G2) Marshal() []byte {
	// Each value is a 256-bit number.
	const numBytes = 256 / 8

	if n.p.IsInfinity() {
		return make([]byte, numBytes*4)
	}

	n.p.MakeAffine(nil)

	xxBytes := new(big.Int).Mod(n.p.x.x, p).Bytes()
	xyBytes := new(big.Int).Mod(n.p.x.y, p).Bytes()
	yxBytes := new(big.Int).Mod(n.p.y.x, p).Bytes()
	yyBytes := new(big.Int).Mod(n.p.y.y, p).Bytes()

	ret := make([]byte, numBytes*4)
	copy(ret[1*numBytes-len(xxBytes):], xxBytes)
	copy(ret[2*numBytes-len(xyBytes):], xyBytes)
	copy(ret[3*numBytes-len(yxBytes):], yxBytes)
	copy(ret[4*numBytes-len(yyBytes):], yyBytes)

	return ret
}

// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G2) Unmarshal(m []byte) (*G2, bool) {
	// Each value is a 256-bit number.
	const numBytes = 256 / 8

	if len(m) != 4*numBytes {
		return nil, false
	}

	if e.p == nil {
		e.p = newTwistPoint(nil)
	}

	e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
	e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
	e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
	e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])

	if e.p.x.x.Sign() == 0 &&
		e.p.x.y.Sign() == 0 &&
		e.p.y.x.Sign() == 0 &&
		e.p.y.y.Sign() == 0 {
		// This is the point at infinity.
		e.p.y.SetOne()
		e.p.z.SetZero()
		e.p.t.SetZero()
	} else {
		e.p.z.SetOne()
		e.p.t.SetOne()

		if !e.p.IsOnCurve() {
			return nil, false
		}
	}

	return e, true
}

// GT is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type GT struct {
	p *gfP12
}

func (g *GT) String() string {
	return "bn256.GT" + g.p.String()
}

// ScalarMult sets e to a*k and then returns e.
func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
	if e.p == nil {
		e.p = newGFp12(nil)
	}
	e.p.Exp(a.p, k, new(bnPool))
	return e
}

// Add sets e to a+b and then returns e.
func (e *GT) Add(a, b *GT) *GT {
	if e.p == nil {
		e.p = newGFp12(nil)
	}
	e.p.Mul(a.p, b.p, new(bnPool))
	return e
}

// Neg sets e to -a and then returns e.
func (e *GT) Neg(a *GT) *GT {
	if e.p == nil {
		e.p = newGFp12(nil)
	}
	e.p.Invert(a.p, new(bnPool))
	return e
}

// Marshal converts n into a byte slice.
func (n *GT) Marshal() []byte {
	n.p.Minimal()

	xxxBytes := n.p.x.x.x.Bytes()
	xxyBytes := n.p.x.x.y.Bytes()
	xyxBytes := n.p.x.y.x.Bytes()
	xyyBytes := n.p.x.y.y.Bytes()
	xzxBytes := n.p.x.z.x.Bytes()
	xzyBytes := n.p.x.z.y.Bytes()
	yxxBytes := n.p.y.x.x.Bytes()
	yxyBytes := n.p.y.x.y.Bytes()
	yyxBytes := n.p.y.y.x.Bytes()
	yyyBytes := n.p.y.y.y.Bytes()
	yzxBytes := n.p.y.z.x.Bytes()
	yzyBytes := n.p.y.z.y.Bytes()

	// Each value is a 256-bit number.
	const numBytes = 256 / 8

	ret := make([]byte, numBytes*12)
	copy(ret[1*numBytes-len(xxxBytes):], xxxBytes)
	copy(ret[2*numBytes-len(xxyBytes):], xxyBytes)
	copy(ret[3*numBytes-len(xyxBytes):], xyxBytes)
	copy(ret[4*numBytes-len(xyyBytes):], xyyBytes)
	copy(ret[5*numBytes-len(xzxBytes):], xzxBytes)
	copy(ret[6*numBytes-len(xzyBytes):], xzyBytes)
	copy(ret[7*numBytes-len(yxxBytes):], yxxBytes)
	copy(ret[8*numBytes-len(yxyBytes):], yxyBytes)
	copy(ret[9*numBytes-len(yyxBytes):], yyxBytes)
	copy(ret[10*numBytes-len(yyyBytes):], yyyBytes)
	copy(ret[11*numBytes-len(yzxBytes):], yzxBytes)
	copy(ret[12*numBytes-len(yzyBytes):], yzyBytes)

	return ret
}

// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *GT) Unmarshal(m []byte) (*GT, bool) {
	// Each value is a 256-bit number.
	const numBytes = 256 / 8

	if len(m) != 12*numBytes {
		return nil, false
	}

	if e.p == nil {
		e.p = newGFp12(nil)
	}

	e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes])
	e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes])
	e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes])
	e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes])
	e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes])
	e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes])
	e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes])
	e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes])
	e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes])
	e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes])
	e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes])
	e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes])

	return e, true
}

// Pair calculates an Optimal Ate pairing.
func Pair(g1 *G1, g2 *G2) *GT {
	return &GT{optimalAte(g2.p, g1.p, new(bnPool))}
}

// bnPool implements a tiny cache of *big.Int objects that's used to reduce the
// number of allocations made during processing.
type bnPool struct {
	bns   []*big.Int
	count int
}

func (pool *bnPool) Get() *big.Int {
	if pool == nil {
		return new(big.Int)
	}

	pool.count++
	l := len(pool.bns)
	if l == 0 {
		return new(big.Int)
	}

	bn := pool.bns[l-1]
	pool.bns = pool.bns[:l-1]
	return bn
}

func (pool *bnPool) Put(bn *big.Int) {
	if pool == nil {
		return
	}
	pool.bns = append(pool.bns, bn)
	pool.count--
}

func (pool *bnPool) Count() int {
	return pool.count
}