curve.go 5.55 KB
Newer Older
zhangweiwei's avatar
init  
zhangweiwei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package bn256

import (
	"math/big"
)

// curvePoint implements the elliptic curve y²=x³+3. Points are kept in
// Jacobian form and t=z² when valid. G₁ is the set of points of this curve on
// GF(p).
type curvePoint struct {
	x, y, z, t *big.Int
}

var curveB = new(big.Int).SetInt64(3)

// curveGen is the generator of G₁.
var curveGen = &curvePoint{
	new(big.Int).SetInt64(1),
	new(big.Int).SetInt64(-2),
	new(big.Int).SetInt64(1),
	new(big.Int).SetInt64(1),
}

func newCurvePoint(pool *bnPool) *curvePoint {
	return &curvePoint{
		pool.Get(),
		pool.Get(),
		pool.Get(),
		pool.Get(),
	}
}

func (c *curvePoint) String() string {
	c.MakeAffine(new(bnPool))
	return "(" + c.x.String() + ", " + c.y.String() + ")"
}

func (c *curvePoint) Put(pool *bnPool) {
	pool.Put(c.x)
	pool.Put(c.y)
	pool.Put(c.z)
	pool.Put(c.t)
}

func (c *curvePoint) Set(a *curvePoint) {
	c.x.Set(a.x)
	c.y.Set(a.y)
	c.z.Set(a.z)
	c.t.Set(a.t)
}

// IsOnCurve returns true iff c is on the curve where c must be in affine form.
func (c *curvePoint) IsOnCurve() bool {
	yy := new(big.Int).Mul(c.y, c.y)
	xxx := new(big.Int).Mul(c.x, c.x)
	xxx.Mul(xxx, c.x)
	yy.Sub(yy, xxx)
	yy.Sub(yy, curveB)
	if yy.Sign() < 0 || yy.Cmp(p) >= 0 {
		yy.Mod(yy, p)
	}
	return yy.Sign() == 0
}

func (c *curvePoint) SetInfinity() {
	c.z.SetInt64(0)
}

func (c *curvePoint) IsInfinity() bool {
	return c.z.Sign() == 0
}

func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) {
	if a.IsInfinity() {
		c.Set(b)
		return
	}
	if b.IsInfinity() {
		c.Set(a)
		return
	}

	// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3

	// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
	// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
	// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
	z1z1 := pool.Get().Mul(a.z, a.z)
	z1z1.Mod(z1z1, p)
	z2z2 := pool.Get().Mul(b.z, b.z)
	z2z2.Mod(z2z2, p)
	u1 := pool.Get().Mul(a.x, z2z2)
	u1.Mod(u1, p)
	u2 := pool.Get().Mul(b.x, z1z1)
	u2.Mod(u2, p)

	t := pool.Get().Mul(b.z, z2z2)
	t.Mod(t, p)
	s1 := pool.Get().Mul(a.y, t)
	s1.Mod(s1, p)

	t.Mul(a.z, z1z1)
	t.Mod(t, p)
	s2 := pool.Get().Mul(b.y, t)
	s2.Mod(s2, p)

	// Compute x = (2h)²(s²-u1-u2)
	// where s = (s2-s1)/(u2-u1) is the slope of the line through
	// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
	// This is also:
	// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
	//                        = r² - j - 2v
	// with the notations below.
	h := pool.Get().Sub(u2, u1)
	xEqual := h.Sign() == 0

	t.Add(h, h)
	// i = 4h²
	i := pool.Get().Mul(t, t)
	i.Mod(i, p)
	// j = 4h³
	j := pool.Get().Mul(h, i)
	j.Mod(j, p)

	t.Sub(s2, s1)
	yEqual := t.Sign() == 0
	if xEqual && yEqual {
		c.Double(a, pool)
		return
	}
	r := pool.Get().Add(t, t)

	v := pool.Get().Mul(u1, i)
	v.Mod(v, p)

	// t4 = 4(s2-s1)²
	t4 := pool.Get().Mul(r, r)
	t4.Mod(t4, p)
	t.Add(v, v)
	t6 := pool.Get().Sub(t4, j)
	c.x.Sub(t6, t)

	// Set y = -(2h)³(s1 + s*(x/4h²-u1))
	// This is also
	// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
	t.Sub(v, c.x) // t7
	t4.Mul(s1, j) // t8
	t4.Mod(t4, p)
	t6.Add(t4, t4) // t9
	t4.Mul(r, t)   // t10
	t4.Mod(t4, p)
	c.y.Sub(t4, t6)

	// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
	t.Add(a.z, b.z) // t11
	t4.Mul(t, t)    // t12
	t4.Mod(t4, p)
	t.Sub(t4, z1z1) // t13
	t4.Sub(t, z2z2) // t14
	c.z.Mul(t4, h)
	c.z.Mod(c.z, p)

	pool.Put(z1z1)
	pool.Put(z2z2)
	pool.Put(u1)
	pool.Put(u2)
	pool.Put(t)
	pool.Put(s1)
	pool.Put(s2)
	pool.Put(h)
	pool.Put(i)
	pool.Put(j)
	pool.Put(r)
	pool.Put(v)
	pool.Put(t4)
	pool.Put(t6)
}

func (c *curvePoint) Double(a *curvePoint, pool *bnPool) {
	// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
	A := pool.Get().Mul(a.x, a.x)
	A.Mod(A, p)
	B := pool.Get().Mul(a.y, a.y)
	B.Mod(B, p)
	C := pool.Get().Mul(B, B)
	C.Mod(C, p)

	t := pool.Get().Add(a.x, B)
	t2 := pool.Get().Mul(t, t)
	t2.Mod(t2, p)
	t.Sub(t2, A)
	t2.Sub(t, C)
	d := pool.Get().Add(t2, t2)
	t.Add(A, A)
	e := pool.Get().Add(t, A)
	f := pool.Get().Mul(e, e)
	f.Mod(f, p)

	t.Add(d, d)
	c.x.Sub(f, t)

	t.Add(C, C)
	t2.Add(t, t)
	t.Add(t2, t2)
	c.y.Sub(d, c.x)
	t2.Mul(e, c.y)
	t2.Mod(t2, p)
	c.y.Sub(t2, t)

	t.Mul(a.y, a.z)
	t.Mod(t, p)
	c.z.Add(t, t)

	pool.Put(A)
	pool.Put(B)
	pool.Put(C)
	pool.Put(t)
	pool.Put(t2)
	pool.Put(d)
	pool.Put(e)
	pool.Put(f)
}

func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint {
	sum := newCurvePoint(pool)
	sum.SetInfinity()
	t := newCurvePoint(pool)

	for i := scalar.BitLen(); i >= 0; i-- {
		t.Double(sum, pool)
		if scalar.Bit(i) != 0 {
			sum.Add(t, a, pool)
		} else {
			sum.Set(t)
		}
	}

	c.Set(sum)
	sum.Put(pool)
	t.Put(pool)
	return c
}

// MakeAffine converts c to affine form and returns c. If c is ∞, then it sets
// c to 0 : 1 : 0.
func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint {
	if words := c.z.Bits(); len(words) == 1 && words[0] == 1 {
		return c
	}
	if c.IsInfinity() {
		c.x.SetInt64(0)
		c.y.SetInt64(1)
		c.z.SetInt64(0)
		c.t.SetInt64(0)
		return c
	}

	zInv := pool.Get().ModInverse(c.z, p)
	t := pool.Get().Mul(c.y, zInv)
	t.Mod(t, p)
	zInv2 := pool.Get().Mul(zInv, zInv)
	zInv2.Mod(zInv2, p)
	c.y.Mul(t, zInv2)
	c.y.Mod(c.y, p)
	t.Mul(c.x, zInv2)
	t.Mod(t, p)
	c.x.Set(t)
	c.z.SetInt64(1)
	c.t.SetInt64(1)

	pool.Put(zInv)
	pool.Put(t)
	pool.Put(zInv2)

	return c
}

func (c *curvePoint) Negative(a *curvePoint) {
	c.x.Set(a.x)
	c.y.Neg(a.y)
	c.z.Set(a.z)
	c.t.SetInt64(0)
}