optate.go 8.46 KB
Newer Older
zhangweiwei's avatar
init  
zhangweiwei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package bn256

func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
	// See the mixed addition algorithm from "Faster Computation of the
	// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf

	B := newGFp2(pool).Mul(p.x, r.t, pool)

	D := newGFp2(pool).Add(p.y, r.z)
	D.Square(D, pool)
	D.Sub(D, r2)
	D.Sub(D, r.t)
	D.Mul(D, r.t, pool)

	H := newGFp2(pool).Sub(B, r.x)
	I := newGFp2(pool).Square(H, pool)

	E := newGFp2(pool).Add(I, I)
	E.Add(E, E)

	J := newGFp2(pool).Mul(H, E, pool)

	L1 := newGFp2(pool).Sub(D, r.y)
	L1.Sub(L1, r.y)

	V := newGFp2(pool).Mul(r.x, E, pool)

	rOut = newTwistPoint(pool)
	rOut.x.Square(L1, pool)
	rOut.x.Sub(rOut.x, J)
	rOut.x.Sub(rOut.x, V)
	rOut.x.Sub(rOut.x, V)

	rOut.z.Add(r.z, H)
	rOut.z.Square(rOut.z, pool)
	rOut.z.Sub(rOut.z, r.t)
	rOut.z.Sub(rOut.z, I)

	t := newGFp2(pool).Sub(V, rOut.x)
	t.Mul(t, L1, pool)
	t2 := newGFp2(pool).Mul(r.y, J, pool)
	t2.Add(t2, t2)
	rOut.y.Sub(t, t2)

	rOut.t.Square(rOut.z, pool)

	t.Add(p.y, rOut.z)
	t.Square(t, pool)
	t.Sub(t, r2)
	t.Sub(t, rOut.t)

	t2.Mul(L1, p.x, pool)
	t2.Add(t2, t2)
	a = newGFp2(pool)
	a.Sub(t2, t)

	c = newGFp2(pool)
	c.MulScalar(rOut.z, q.y)
	c.Add(c, c)

	b = newGFp2(pool)
	b.SetZero()
	b.Sub(b, L1)
	b.MulScalar(b, q.x)
	b.Add(b, b)

	B.Put(pool)
	D.Put(pool)
	H.Put(pool)
	I.Put(pool)
	E.Put(pool)
	J.Put(pool)
	L1.Put(pool)
	V.Put(pool)
	t.Put(pool)
	t2.Put(pool)

	return
}

func lineFunctionDouble(r *twistPoint, q *curvePoint, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
	// See the doubling algorithm for a=0 from "Faster Computation of the
	// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf

	A := newGFp2(pool).Square(r.x, pool)
	B := newGFp2(pool).Square(r.y, pool)
	C := newGFp2(pool).Square(B, pool)

	D := newGFp2(pool).Add(r.x, B)
	D.Square(D, pool)
	D.Sub(D, A)
	D.Sub(D, C)
	D.Add(D, D)

	E := newGFp2(pool).Add(A, A)
	E.Add(E, A)

	G := newGFp2(pool).Square(E, pool)

	rOut = newTwistPoint(pool)
	rOut.x.Sub(G, D)
	rOut.x.Sub(rOut.x, D)

	rOut.z.Add(r.y, r.z)
	rOut.z.Square(rOut.z, pool)
	rOut.z.Sub(rOut.z, B)
	rOut.z.Sub(rOut.z, r.t)

	rOut.y.Sub(D, rOut.x)
	rOut.y.Mul(rOut.y, E, pool)
	t := newGFp2(pool).Add(C, C)
	t.Add(t, t)
	t.Add(t, t)
	rOut.y.Sub(rOut.y, t)

	rOut.t.Square(rOut.z, pool)

	t.Mul(E, r.t, pool)
	t.Add(t, t)
	b = newGFp2(pool)
	b.SetZero()
	b.Sub(b, t)
	b.MulScalar(b, q.x)

	a = newGFp2(pool)
	a.Add(r.x, E)
	a.Square(a, pool)
	a.Sub(a, A)
	a.Sub(a, G)
	t.Add(B, B)
	t.Add(t, t)
	a.Sub(a, t)

	c = newGFp2(pool)
	c.Mul(rOut.z, r.t, pool)
	c.Add(c, c)
	c.MulScalar(c, q.y)

	A.Put(pool)
	B.Put(pool)
	C.Put(pool)
	D.Put(pool)
	E.Put(pool)
	G.Put(pool)
	t.Put(pool)

	return
}

func mulLine(ret *gfP12, a, b, c *gfP2, pool *bnPool) {
	a2 := newGFp6(pool)
	a2.x.SetZero()
	a2.y.Set(a)
	a2.z.Set(b)
	a2.Mul(a2, ret.x, pool)
	t3 := newGFp6(pool).MulScalar(ret.y, c, pool)

	t := newGFp2(pool)
	t.Add(b, c)
	t2 := newGFp6(pool)
	t2.x.SetZero()
	t2.y.Set(a)
	t2.z.Set(t)
	ret.x.Add(ret.x, ret.y)

	ret.y.Set(t3)

	ret.x.Mul(ret.x, t2, pool)
	ret.x.Sub(ret.x, a2)
	ret.x.Sub(ret.x, ret.y)
	a2.MulTau(a2, pool)
	ret.y.Add(ret.y, a2)

	a2.Put(pool)
	t3.Put(pool)
	t2.Put(pool)
	t.Put(pool)
}

// sixuPlus2NAF is 6u+2 in non-adjacent form.
var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, -1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 1}

// miller implements the Miller loop for calculating the Optimal Ate pairing.
// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf
func miller(q *twistPoint, p *curvePoint, pool *bnPool) *gfP12 {
	ret := newGFp12(pool)
	ret.SetOne()

	aAffine := newTwistPoint(pool)
	aAffine.Set(q)
	aAffine.MakeAffine(pool)

	bAffine := newCurvePoint(pool)
	bAffine.Set(p)
	bAffine.MakeAffine(pool)

	minusA := newTwistPoint(pool)
	minusA.Negative(aAffine, pool)

	r := newTwistPoint(pool)
	r.Set(aAffine)

	r2 := newGFp2(pool)
	r2.Square(aAffine.y, pool)

	for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
		a, b, c, newR := lineFunctionDouble(r, bAffine, pool)
		if i != len(sixuPlus2NAF)-1 {
			ret.Square(ret, pool)
		}

		mulLine(ret, a, b, c, pool)
		a.Put(pool)
		b.Put(pool)
		c.Put(pool)
		r.Put(pool)
		r = newR

		switch sixuPlus2NAF[i-1] {
		case 1:
			a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2, pool)
		case -1:
			a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2, pool)
		default:
			continue
		}

		mulLine(ret, a, b, c, pool)
		a.Put(pool)
		b.Put(pool)
		c.Put(pool)
		r.Put(pool)
		r = newR
	}

	// In order to calculate Q1 we have to convert q from the sextic twist
	// to the full GF(p^12) group, apply the Frobenius there, and convert
	// back.
	//
	// The twist isomorphism is (x', y') -> (xω², yω³). If we consider just
	// x for a moment, then after applying the Frobenius, we have x̄ω^(2p)
	// where x̄ is the conjugate of x. If we are going to apply the inverse
	// isomorphism we need a value with a single coefficient of ω² so we
	// rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
	// p, 2p-2 is a multiple of six. Therefore we can rewrite as
	// x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
	// ω².
	//
	// A similar argument can be made for the y value.

	q1 := newTwistPoint(pool)
	q1.x.Conjugate(aAffine.x)
	q1.x.Mul(q1.x, xiToPMinus1Over3, pool)
	q1.y.Conjugate(aAffine.y)
	q1.y.Mul(q1.y, xiToPMinus1Over2, pool)
	q1.z.SetOne()
	q1.t.SetOne()

	// For Q2 we are applying the p² Frobenius. The two conjugations cancel
	// out and we are left only with the factors from the isomorphism. In
	// the case of x, we end up with a pure number which is why
	// xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We
	// ignore this to end up with -Q2.

	minusQ2 := newTwistPoint(pool)
	minusQ2.x.MulScalar(aAffine.x, xiToPSquaredMinus1Over3)
	minusQ2.y.Set(aAffine.y)
	minusQ2.z.SetOne()
	minusQ2.t.SetOne()

	r2.Square(q1.y, pool)
	a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2, pool)
	mulLine(ret, a, b, c, pool)
	a.Put(pool)
	b.Put(pool)
	c.Put(pool)
	r.Put(pool)
	r = newR

	r2.Square(minusQ2.y, pool)
	a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2, pool)
	mulLine(ret, a, b, c, pool)
	a.Put(pool)
	b.Put(pool)
	c.Put(pool)
	r.Put(pool)
	r = newR

	aAffine.Put(pool)
	bAffine.Put(pool)
	minusA.Put(pool)
	r.Put(pool)
	r2.Put(pool)

	return ret
}

// finalExponentiation computes the (p¹²-1)/Order-th power of an element of
// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from
// http://cryptojedi.org/papers/dclxvi-20100714.pdf)
func finalExponentiation(in *gfP12, pool *bnPool) *gfP12 {
	t1 := newGFp12(pool)

	// This is the p^6-Frobenius
	t1.x.Negative(in.x)
	t1.y.Set(in.y)

	inv := newGFp12(pool)
	inv.Invert(in, pool)
	t1.Mul(t1, inv, pool)

	t2 := newGFp12(pool).FrobeniusP2(t1, pool)
	t1.Mul(t1, t2, pool)

	fp := newGFp12(pool).Frobenius(t1, pool)
	fp2 := newGFp12(pool).FrobeniusP2(t1, pool)
	fp3 := newGFp12(pool).Frobenius(fp2, pool)

	fu, fu2, fu3 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
	fu.Exp(t1, u, pool)
	fu2.Exp(fu, u, pool)
	fu3.Exp(fu2, u, pool)

	y3 := newGFp12(pool).Frobenius(fu, pool)
	fu2p := newGFp12(pool).Frobenius(fu2, pool)
	fu3p := newGFp12(pool).Frobenius(fu3, pool)
	y2 := newGFp12(pool).FrobeniusP2(fu2, pool)

	y0 := newGFp12(pool)
	y0.Mul(fp, fp2, pool)
	y0.Mul(y0, fp3, pool)

	y1, y4, y5 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
	y1.Conjugate(t1)
	y5.Conjugate(fu2)
	y3.Conjugate(y3)
	y4.Mul(fu, fu2p, pool)
	y4.Conjugate(y4)

	y6 := newGFp12(pool)
	y6.Mul(fu3, fu3p, pool)
	y6.Conjugate(y6)

	t0 := newGFp12(pool)
	t0.Square(y6, pool)
	t0.Mul(t0, y4, pool)
	t0.Mul(t0, y5, pool)
	t1.Mul(y3, y5, pool)
	t1.Mul(t1, t0, pool)
	t0.Mul(t0, y2, pool)
	t1.Square(t1, pool)
	t1.Mul(t1, t0, pool)
	t1.Square(t1, pool)
	t0.Mul(t1, y1, pool)
	t1.Mul(t1, y0, pool)
	t0.Square(t0, pool)
	t0.Mul(t0, t1, pool)

	inv.Put(pool)
	t1.Put(pool)
	t2.Put(pool)
	fp.Put(pool)
	fp2.Put(pool)
	fp3.Put(pool)
	fu.Put(pool)
	fu2.Put(pool)
	fu3.Put(pool)
	fu2p.Put(pool)
	fu3p.Put(pool)
	y0.Put(pool)
	y1.Put(pool)
	y2.Put(pool)
	y3.Put(pool)
	y4.Put(pool)
	y5.Put(pool)
	y6.Put(pool)

	return t0
}

func optimalAte(a *twistPoint, b *curvePoint, pool *bnPool) *gfP12 {
	e := miller(a, b, pool)
	ret := finalExponentiation(e, pool)
	e.Put(pool)

	if a.IsInfinity() || b.IsInfinity() {
		ret.SetOne()
	}

	return ret
}