mont25519_amd64.go 5.15 KB
Newer Older
zhangweiwei's avatar
init  
zhangweiwei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// +build amd64,!gccgo,!appengine

package curve25519

// These functions are implemented in the .s files. The names of the functions
// in the rest of the file are also taken from the SUPERCOP sources to help
// people following along.

//go:noescape

func cswap(inout *[5]uint64, v uint64)

//go:noescape

func ladderstep(inout *[5][5]uint64)

//go:noescape

func freeze(inout *[5]uint64)

//go:noescape

func mul(dest, a, b *[5]uint64)

//go:noescape

func square(out, in *[5]uint64)

// mladder uses a Montgomery ladder to calculate (xr/zr) *= s.
func mladder(xr, zr *[5]uint64, s *[32]byte) {
	var work [5][5]uint64

	work[0] = *xr
	setint(&work[1], 1)
	setint(&work[2], 0)
	work[3] = *xr
	setint(&work[4], 1)

	j := uint(6)
	var prevbit byte

	for i := 31; i >= 0; i-- {
		for j < 8 {
			bit := ((*s)[i] >> j) & 1
			swap := bit ^ prevbit
			prevbit = bit
			cswap(&work[1], uint64(swap))
			ladderstep(&work)
			j--
		}
		j = 7
	}

	*xr = work[1]
	*zr = work[2]
}

func scalarMult(out, in, base *[32]byte) {
	var e [32]byte
	copy(e[:], (*in)[:])
	e[0] &= 248
	e[31] &= 127
	e[31] |= 64

	var t, z [5]uint64
	unpack(&t, base)
	mladder(&t, &z, &e)
	invert(&z, &z)
	mul(&t, &t, &z)
	pack(out, &t)
}

func setint(r *[5]uint64, v uint64) {
	r[0] = v
	r[1] = 0
	r[2] = 0
	r[3] = 0
	r[4] = 0
}

// unpack sets r = x where r consists of 5, 51-bit limbs in little-endian
// order.
func unpack(r *[5]uint64, x *[32]byte) {
	r[0] = uint64(x[0]) |
		uint64(x[1])<<8 |
		uint64(x[2])<<16 |
		uint64(x[3])<<24 |
		uint64(x[4])<<32 |
		uint64(x[5])<<40 |
		uint64(x[6]&7)<<48

	r[1] = uint64(x[6])>>3 |
		uint64(x[7])<<5 |
		uint64(x[8])<<13 |
		uint64(x[9])<<21 |
		uint64(x[10])<<29 |
		uint64(x[11])<<37 |
		uint64(x[12]&63)<<45

	r[2] = uint64(x[12])>>6 |
		uint64(x[13])<<2 |
		uint64(x[14])<<10 |
		uint64(x[15])<<18 |
		uint64(x[16])<<26 |
		uint64(x[17])<<34 |
		uint64(x[18])<<42 |
		uint64(x[19]&1)<<50

	r[3] = uint64(x[19])>>1 |
		uint64(x[20])<<7 |
		uint64(x[21])<<15 |
		uint64(x[22])<<23 |
		uint64(x[23])<<31 |
		uint64(x[24])<<39 |
		uint64(x[25]&15)<<47

	r[4] = uint64(x[25])>>4 |
		uint64(x[26])<<4 |
		uint64(x[27])<<12 |
		uint64(x[28])<<20 |
		uint64(x[29])<<28 |
		uint64(x[30])<<36 |
		uint64(x[31]&127)<<44
}

// pack sets out = x where out is the usual, little-endian form of the 5,
// 51-bit limbs in x.
func pack(out *[32]byte, x *[5]uint64) {
	t := *x
	freeze(&t)

	out[0] = byte(t[0])
	out[1] = byte(t[0] >> 8)
	out[2] = byte(t[0] >> 16)
	out[3] = byte(t[0] >> 24)
	out[4] = byte(t[0] >> 32)
	out[5] = byte(t[0] >> 40)
	out[6] = byte(t[0] >> 48)

	out[6] ^= byte(t[1]<<3) & 0xf8
	out[7] = byte(t[1] >> 5)
	out[8] = byte(t[1] >> 13)
	out[9] = byte(t[1] >> 21)
	out[10] = byte(t[1] >> 29)
	out[11] = byte(t[1] >> 37)
	out[12] = byte(t[1] >> 45)

	out[12] ^= byte(t[2]<<6) & 0xc0
	out[13] = byte(t[2] >> 2)
	out[14] = byte(t[2] >> 10)
	out[15] = byte(t[2] >> 18)
	out[16] = byte(t[2] >> 26)
	out[17] = byte(t[2] >> 34)
	out[18] = byte(t[2] >> 42)
	out[19] = byte(t[2] >> 50)

	out[19] ^= byte(t[3]<<1) & 0xfe
	out[20] = byte(t[3] >> 7)
	out[21] = byte(t[3] >> 15)
	out[22] = byte(t[3] >> 23)
	out[23] = byte(t[3] >> 31)
	out[24] = byte(t[3] >> 39)
	out[25] = byte(t[3] >> 47)

	out[25] ^= byte(t[4]<<4) & 0xf0
	out[26] = byte(t[4] >> 4)
	out[27] = byte(t[4] >> 12)
	out[28] = byte(t[4] >> 20)
	out[29] = byte(t[4] >> 28)
	out[30] = byte(t[4] >> 36)
	out[31] = byte(t[4] >> 44)
}

// invert calculates r = x^-1 mod p using Fermat's little theorem.
func invert(r *[5]uint64, x *[5]uint64) {
	var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t [5]uint64

	square(&z2, x)        /* 2 */
	square(&t, &z2)       /* 4 */
	square(&t, &t)        /* 8 */
	mul(&z9, &t, x)       /* 9 */
	mul(&z11, &z9, &z2)   /* 11 */
	square(&t, &z11)      /* 22 */
	mul(&z2_5_0, &t, &z9) /* 2^5 - 2^0 = 31 */

	square(&t, &z2_5_0)      /* 2^6 - 2^1 */
	for i := 1; i < 5; i++ { /* 2^20 - 2^10 */
		square(&t, &t)
	}
	mul(&z2_10_0, &t, &z2_5_0) /* 2^10 - 2^0 */

	square(&t, &z2_10_0)      /* 2^11 - 2^1 */
	for i := 1; i < 10; i++ { /* 2^20 - 2^10 */
		square(&t, &t)
	}
	mul(&z2_20_0, &t, &z2_10_0) /* 2^20 - 2^0 */

	square(&t, &z2_20_0)      /* 2^21 - 2^1 */
	for i := 1; i < 20; i++ { /* 2^40 - 2^20 */
		square(&t, &t)
	}
	mul(&t, &t, &z2_20_0) /* 2^40 - 2^0 */

	square(&t, &t)            /* 2^41 - 2^1 */
	for i := 1; i < 10; i++ { /* 2^50 - 2^10 */
		square(&t, &t)
	}
	mul(&z2_50_0, &t, &z2_10_0) /* 2^50 - 2^0 */

	square(&t, &z2_50_0)      /* 2^51 - 2^1 */
	for i := 1; i < 50; i++ { /* 2^100 - 2^50 */
		square(&t, &t)
	}
	mul(&z2_100_0, &t, &z2_50_0) /* 2^100 - 2^0 */

	square(&t, &z2_100_0)      /* 2^101 - 2^1 */
	for i := 1; i < 100; i++ { /* 2^200 - 2^100 */
		square(&t, &t)
	}
	mul(&t, &t, &z2_100_0) /* 2^200 - 2^0 */

	square(&t, &t)            /* 2^201 - 2^1 */
	for i := 1; i < 50; i++ { /* 2^250 - 2^50 */
		square(&t, &t)
	}
	mul(&t, &t, &z2_50_0) /* 2^250 - 2^0 */

	square(&t, &t) /* 2^251 - 2^1 */
	square(&t, &t) /* 2^252 - 2^2 */
	square(&t, &t) /* 2^253 - 2^3 */

	square(&t, &t) /* 2^254 - 2^4 */

	square(&t, &t)   /* 2^255 - 2^5 */
	mul(r, &t, &z11) /* 2^255 - 21 */
}