chacha_generic.go 7.68 KB
Newer Older
zhangweiwei's avatar
init  
zhangweiwei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package ChaCha20 implements the core ChaCha20 function as specified
// in https://tools.ietf.org/html/rfc7539#section-2.3.
package chacha20

import (
	"crypto/cipher"
	"encoding/binary"

	"golang.org/x/crypto/internal/subtle"
)

// assert that *Cipher implements cipher.Stream
var _ cipher.Stream = (*Cipher)(nil)

// Cipher is a stateful instance of ChaCha20 using a particular key
// and nonce. A *Cipher implements the cipher.Stream interface.
type Cipher struct {
	key     [8]uint32
	counter uint32 // incremented after each block
	nonce   [3]uint32
	buf     [bufSize]byte // buffer for unused keystream bytes
	len     int           // number of unused keystream bytes at end of buf
}

// New creates a new ChaCha20 stream cipher with the given key and nonce.
// The initial counter value is set to 0.
func New(key [8]uint32, nonce [3]uint32) *Cipher {
	return &Cipher{key: key, nonce: nonce}
}

// ChaCha20 constants spelling "expand 32-byte k"
const (
	j0 uint32 = 0x61707865
	j1 uint32 = 0x3320646e
	j2 uint32 = 0x79622d32
	j3 uint32 = 0x6b206574
)

func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) {
	a += b
	d ^= a
	d = (d << 16) | (d >> 16)
	c += d
	b ^= c
	b = (b << 12) | (b >> 20)
	a += b
	d ^= a
	d = (d << 8) | (d >> 24)
	c += d
	b ^= c
	b = (b << 7) | (b >> 25)
	return a, b, c, d
}

// XORKeyStream XORs each byte in the given slice with a byte from the
// cipher's key stream. Dst and src must overlap entirely or not at all.
//
// If len(dst) < len(src), XORKeyStream will panic. It is acceptable
// to pass a dst bigger than src, and in that case, XORKeyStream will
// only update dst[:len(src)] and will not touch the rest of dst.
//
// Multiple calls to XORKeyStream behave as if the concatenation of
// the src buffers was passed in a single run. That is, Cipher
// maintains state and does not reset at each XORKeyStream call.
func (s *Cipher) XORKeyStream(dst, src []byte) {
	if len(dst) < len(src) {
		panic("chacha20: output smaller than input")
	}
	if subtle.InexactOverlap(dst[:len(src)], src) {
		panic("chacha20: invalid buffer overlap")
	}

	// xor src with buffered keystream first
	if s.len != 0 {
		buf := s.buf[len(s.buf)-s.len:]
		if len(src) < len(buf) {
			buf = buf[:len(src)]
		}
		td, ts := dst[:len(buf)], src[:len(buf)] // BCE hint
		for i, b := range buf {
			td[i] = ts[i] ^ b
		}
		s.len -= len(buf)
		if s.len != 0 {
			return
		}
		s.buf = [len(s.buf)]byte{} // zero the empty buffer
		src = src[len(buf):]
		dst = dst[len(buf):]
	}

	if len(src) == 0 {
		return
	}
	if haveAsm {
		if uint64(len(src))+uint64(s.counter)*64 > (1<<38)-64 {
			panic("chacha20: counter overflow")
		}
		s.xorKeyStreamAsm(dst, src)
		return
	}

	// set up a 64-byte buffer to pad out the final block if needed
	// (hoisted out of the main loop to avoid spills)
	rem := len(src) % 64  // length of final block
	fin := len(src) - rem // index of final block
	if rem > 0 {
		copy(s.buf[len(s.buf)-64:], src[fin:])
	}

	// pre-calculate most of the first round
	s1, s5, s9, s13 := quarterRound(j1, s.key[1], s.key[5], s.nonce[0])
	s2, s6, s10, s14 := quarterRound(j2, s.key[2], s.key[6], s.nonce[1])
	s3, s7, s11, s15 := quarterRound(j3, s.key[3], s.key[7], s.nonce[2])

	n := len(src)
	src, dst = src[:n:n], dst[:n:n] // BCE hint
	for i := 0; i < n; i += 64 {
		// calculate the remainder of the first round
		s0, s4, s8, s12 := quarterRound(j0, s.key[0], s.key[4], s.counter)

		// execute the second round
		x0, x5, x10, x15 := quarterRound(s0, s5, s10, s15)
		x1, x6, x11, x12 := quarterRound(s1, s6, s11, s12)
		x2, x7, x8, x13 := quarterRound(s2, s7, s8, s13)
		x3, x4, x9, x14 := quarterRound(s3, s4, s9, s14)

		// execute the remaining 18 rounds
		for i := 0; i < 9; i++ {
			x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
			x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
			x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
			x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)

			x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
			x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
			x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
			x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
		}

		x0 += j0
		x1 += j1
		x2 += j2
		x3 += j3

		x4 += s.key[0]
		x5 += s.key[1]
		x6 += s.key[2]
		x7 += s.key[3]
		x8 += s.key[4]
		x9 += s.key[5]
		x10 += s.key[6]
		x11 += s.key[7]

		x12 += s.counter
		x13 += s.nonce[0]
		x14 += s.nonce[1]
		x15 += s.nonce[2]

		// increment the counter
		s.counter += 1
		if s.counter == 0 {
			panic("chacha20: counter overflow")
		}

		// pad to 64 bytes if needed
		in, out := src[i:], dst[i:]
		if i == fin {
			// src[fin:] has already been copied into s.buf before
			// the main loop
			in, out = s.buf[len(s.buf)-64:], s.buf[len(s.buf)-64:]
		}
		in, out = in[:64], out[:64] // BCE hint

		// XOR the key stream with the source and write out the result
		xor(out[0:], in[0:], x0)
		xor(out[4:], in[4:], x1)
		xor(out[8:], in[8:], x2)
		xor(out[12:], in[12:], x3)
		xor(out[16:], in[16:], x4)
		xor(out[20:], in[20:], x5)
		xor(out[24:], in[24:], x6)
		xor(out[28:], in[28:], x7)
		xor(out[32:], in[32:], x8)
		xor(out[36:], in[36:], x9)
		xor(out[40:], in[40:], x10)
		xor(out[44:], in[44:], x11)
		xor(out[48:], in[48:], x12)
		xor(out[52:], in[52:], x13)
		xor(out[56:], in[56:], x14)
		xor(out[60:], in[60:], x15)
	}
	// copy any trailing bytes out of the buffer and into dst
	if rem != 0 {
		s.len = 64 - rem
		copy(dst[fin:], s.buf[len(s.buf)-64:])
	}
}

// Advance discards bytes in the key stream until the next 64 byte block
// boundary is reached and updates the counter accordingly. If the key
// stream is already at a block boundary no bytes will be discarded and
// the counter will be unchanged.
func (s *Cipher) Advance() {
	s.len -= s.len % 64
	if s.len == 0 {
		s.buf = [len(s.buf)]byte{}
	}
}

// XORKeyStream crypts bytes from in to out using the given key and counters.
// In and out must overlap entirely or not at all. Counter contains the raw
// ChaCha20 counter bytes (i.e. block counter followed by nonce).
func XORKeyStream(out, in []byte, counter *[16]byte, key *[32]byte) {
	s := Cipher{
		key: [8]uint32{
			binary.LittleEndian.Uint32(key[0:4]),
			binary.LittleEndian.Uint32(key[4:8]),
			binary.LittleEndian.Uint32(key[8:12]),
			binary.LittleEndian.Uint32(key[12:16]),
			binary.LittleEndian.Uint32(key[16:20]),
			binary.LittleEndian.Uint32(key[20:24]),
			binary.LittleEndian.Uint32(key[24:28]),
			binary.LittleEndian.Uint32(key[28:32]),
		},
		nonce: [3]uint32{
			binary.LittleEndian.Uint32(counter[4:8]),
			binary.LittleEndian.Uint32(counter[8:12]),
			binary.LittleEndian.Uint32(counter[12:16]),
		},
		counter: binary.LittleEndian.Uint32(counter[0:4]),
	}
	s.XORKeyStream(out, in)
}

// HChaCha20 uses the ChaCha20 core to generate a derived key from a key and a
// nonce. It should only be used as part of the XChaCha20 construction.
func HChaCha20(key *[8]uint32, nonce *[4]uint32) [8]uint32 {
	x0, x1, x2, x3 := j0, j1, j2, j3
	x4, x5, x6, x7 := key[0], key[1], key[2], key[3]
	x8, x9, x10, x11 := key[4], key[5], key[6], key[7]
	x12, x13, x14, x15 := nonce[0], nonce[1], nonce[2], nonce[3]

	for i := 0; i < 10; i++ {
		x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
		x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
		x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
		x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)

		x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
		x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
		x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
		x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
	}

	var out [8]uint32
	out[0], out[1], out[2], out[3] = x0, x1, x2, x3
	out[4], out[5], out[6], out[7] = x12, x13, x14, x15
	return out
}