clearsign.go 10.2 KB
Newer Older
zhangweiwei's avatar
init  
zhangweiwei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package clearsign generates and processes OpenPGP, clear-signed data. See
// RFC 4880, section 7.
//
// Clearsigned messages are cryptographically signed, but the contents of the
// message are kept in plaintext so that it can be read without special tools.
package clearsign // import "golang.org/x/crypto/openpgp/clearsign"

import (
	"bufio"
	"bytes"
	"crypto"
	"fmt"
	"hash"
	"io"
	"net/textproto"
	"strconv"

	"golang.org/x/crypto/openpgp/armor"
	"golang.org/x/crypto/openpgp/errors"
	"golang.org/x/crypto/openpgp/packet"
)

// A Block represents a clearsigned message. A signature on a Block can
// be checked by passing Bytes into openpgp.CheckDetachedSignature.
type Block struct {
	Headers          textproto.MIMEHeader // Optional message headers
	Plaintext        []byte               // The original message text
	Bytes            []byte               // The signed message
	ArmoredSignature *armor.Block         // The signature block
}

// start is the marker which denotes the beginning of a clearsigned message.
var start = []byte("\n-----BEGIN PGP SIGNED MESSAGE-----")

// dashEscape is prefixed to any lines that begin with a hyphen so that they
// can't be confused with endText.
var dashEscape = []byte("- ")

// endText is a marker which denotes the end of the message and the start of
// an armored signature.
var endText = []byte("-----BEGIN PGP SIGNATURE-----")

// end is a marker which denotes the end of the armored signature.
var end = []byte("\n-----END PGP SIGNATURE-----")

var crlf = []byte("\r\n")
var lf = byte('\n')

// getLine returns the first \r\n or \n delineated line from the given byte
// array. The line does not include the \r\n or \n. The remainder of the byte
// array (also not including the new line bytes) is also returned and this will
// always be smaller than the original argument.
func getLine(data []byte) (line, rest []byte) {
	i := bytes.Index(data, []byte{'\n'})
	var j int
	if i < 0 {
		i = len(data)
		j = i
	} else {
		j = i + 1
		if i > 0 && data[i-1] == '\r' {
			i--
		}
	}
	return data[0:i], data[j:]
}

// Decode finds the first clearsigned message in data and returns it, as well
// as the suffix of data which remains after the message.
func Decode(data []byte) (b *Block, rest []byte) {
	// start begins with a newline. However, at the very beginning of
	// the byte array, we'll accept the start string without it.
	rest = data
	if bytes.HasPrefix(data, start[1:]) {
		rest = rest[len(start)-1:]
	} else if i := bytes.Index(data, start); i >= 0 {
		rest = rest[i+len(start):]
	} else {
		return nil, data
	}

	// Consume the start line.
	_, rest = getLine(rest)

	var line []byte
	b = &Block{
		Headers: make(textproto.MIMEHeader),
	}

	// Next come a series of header lines.
	for {
		// This loop terminates because getLine's second result is
		// always smaller than its argument.
		if len(rest) == 0 {
			return nil, data
		}
		// An empty line marks the end of the headers.
		if line, rest = getLine(rest); len(line) == 0 {
			break
		}

		i := bytes.Index(line, []byte{':'})
		if i == -1 {
			return nil, data
		}

		key, val := line[0:i], line[i+1:]
		key = bytes.TrimSpace(key)
		val = bytes.TrimSpace(val)
		b.Headers.Add(string(key), string(val))
	}

	firstLine := true
	for {
		start := rest

		line, rest = getLine(rest)
		if len(line) == 0 && len(rest) == 0 {
			// No armored data was found, so this isn't a complete message.
			return nil, data
		}
		if bytes.Equal(line, endText) {
			// Back up to the start of the line because armor expects to see the
			// header line.
			rest = start
			break
		}

		// The final CRLF isn't included in the hash so we don't write it until
		// we've seen the next line.
		if firstLine {
			firstLine = false
		} else {
			b.Bytes = append(b.Bytes, crlf...)
		}

		if bytes.HasPrefix(line, dashEscape) {
			line = line[2:]
		}
		line = bytes.TrimRight(line, " \t")
		b.Bytes = append(b.Bytes, line...)

		b.Plaintext = append(b.Plaintext, line...)
		b.Plaintext = append(b.Plaintext, lf)
	}

	// We want to find the extent of the armored data (including any newlines at
	// the end).
	i := bytes.Index(rest, end)
	if i == -1 {
		return nil, data
	}
	i += len(end)
	for i < len(rest) && (rest[i] == '\r' || rest[i] == '\n') {
		i++
	}
	armored := rest[:i]
	rest = rest[i:]

	var err error
	b.ArmoredSignature, err = armor.Decode(bytes.NewBuffer(armored))
	if err != nil {
		return nil, data
	}

	return b, rest
}

// A dashEscaper is an io.WriteCloser which processes the body of a clear-signed
// message. The clear-signed message is written to buffered and a hash, suitable
// for signing, is maintained in h.
//
// When closed, an armored signature is created and written to complete the
// message.
type dashEscaper struct {
	buffered *bufio.Writer
	hashers  []hash.Hash // one per key in privateKeys
	hashType crypto.Hash
	toHash   io.Writer // writes to all the hashes in hashers

	atBeginningOfLine bool
	isFirstLine       bool

	whitespace []byte
	byteBuf    []byte // a one byte buffer to save allocations

	privateKeys []*packet.PrivateKey
	config      *packet.Config
}

func (d *dashEscaper) Write(data []byte) (n int, err error) {
	for _, b := range data {
		d.byteBuf[0] = b

		if d.atBeginningOfLine {
			// The final CRLF isn't included in the hash so we have to wait
			// until this point (the start of the next line) before writing it.
			if !d.isFirstLine {
				d.toHash.Write(crlf)
			}
			d.isFirstLine = false
		}

		// Any whitespace at the end of the line has to be removed so we
		// buffer it until we find out whether there's more on this line.
		if b == ' ' || b == '\t' || b == '\r' {
			d.whitespace = append(d.whitespace, b)
			d.atBeginningOfLine = false
			continue
		}

		if d.atBeginningOfLine {
			// At the beginning of a line, hyphens have to be escaped.
			if b == '-' {
				// The signature isn't calculated over the dash-escaped text so
				// the escape is only written to buffered.
				if _, err = d.buffered.Write(dashEscape); err != nil {
					return
				}
				d.toHash.Write(d.byteBuf)
				d.atBeginningOfLine = false
			} else if b == '\n' {
				// Nothing to do because we delay writing CRLF to the hash.
			} else {
				d.toHash.Write(d.byteBuf)
				d.atBeginningOfLine = false
			}
			if err = d.buffered.WriteByte(b); err != nil {
				return
			}
		} else {
			if b == '\n' {
				// We got a raw \n. Drop any trailing whitespace and write a
				// CRLF.
				d.whitespace = d.whitespace[:0]
				// We delay writing CRLF to the hash until the start of the
				// next line.
				if err = d.buffered.WriteByte(b); err != nil {
					return
				}
				d.atBeginningOfLine = true
			} else {
				// Any buffered whitespace wasn't at the end of the line so
				// we need to write it out.
				if len(d.whitespace) > 0 {
					d.toHash.Write(d.whitespace)
					if _, err = d.buffered.Write(d.whitespace); err != nil {
						return
					}
					d.whitespace = d.whitespace[:0]
				}
				d.toHash.Write(d.byteBuf)
				if err = d.buffered.WriteByte(b); err != nil {
					return
				}
			}
		}
	}

	n = len(data)
	return
}

func (d *dashEscaper) Close() (err error) {
	if !d.atBeginningOfLine {
		if err = d.buffered.WriteByte(lf); err != nil {
			return
		}
	}

	out, err := armor.Encode(d.buffered, "PGP SIGNATURE", nil)
	if err != nil {
		return
	}

	t := d.config.Now()
	for i, k := range d.privateKeys {
		sig := new(packet.Signature)
		sig.SigType = packet.SigTypeText
		sig.PubKeyAlgo = k.PubKeyAlgo
		sig.Hash = d.hashType
		sig.CreationTime = t
		sig.IssuerKeyId = &k.KeyId

		if err = sig.Sign(d.hashers[i], k, d.config); err != nil {
			return
		}
		if err = sig.Serialize(out); err != nil {
			return
		}
	}

	if err = out.Close(); err != nil {
		return
	}
	if err = d.buffered.Flush(); err != nil {
		return
	}
	return
}

// Encode returns a WriteCloser which will clear-sign a message with privateKey
// and write it to w. If config is nil, sensible defaults are used.
func Encode(w io.Writer, privateKey *packet.PrivateKey, config *packet.Config) (plaintext io.WriteCloser, err error) {
	return EncodeMulti(w, []*packet.PrivateKey{privateKey}, config)
}

// EncodeMulti returns a WriteCloser which will clear-sign a message with all the
// private keys indicated and write it to w. If config is nil, sensible defaults
// are used.
func EncodeMulti(w io.Writer, privateKeys []*packet.PrivateKey, config *packet.Config) (plaintext io.WriteCloser, err error) {
	for _, k := range privateKeys {
		if k.Encrypted {
			return nil, errors.InvalidArgumentError(fmt.Sprintf("signing key %s is encrypted", k.KeyIdString()))
		}
	}

	hashType := config.Hash()
	name := nameOfHash(hashType)
	if len(name) == 0 {
		return nil, errors.UnsupportedError("unknown hash type: " + strconv.Itoa(int(hashType)))
	}

	if !hashType.Available() {
		return nil, errors.UnsupportedError("unsupported hash type: " + strconv.Itoa(int(hashType)))
	}
	var hashers []hash.Hash
	var ws []io.Writer
	for range privateKeys {
		h := hashType.New()
		hashers = append(hashers, h)
		ws = append(ws, h)
	}
	toHash := io.MultiWriter(ws...)

	buffered := bufio.NewWriter(w)
	// start has a \n at the beginning that we don't want here.
	if _, err = buffered.Write(start[1:]); err != nil {
		return
	}
	if err = buffered.WriteByte(lf); err != nil {
		return
	}
	if _, err = buffered.WriteString("Hash: "); err != nil {
		return
	}
	if _, err = buffered.WriteString(name); err != nil {
		return
	}
	if err = buffered.WriteByte(lf); err != nil {
		return
	}
	if err = buffered.WriteByte(lf); err != nil {
		return
	}

	plaintext = &dashEscaper{
		buffered: buffered,
		hashers:  hashers,
		hashType: hashType,
		toHash:   toHash,

		atBeginningOfLine: true,
		isFirstLine:       true,

		byteBuf: make([]byte, 1),

		privateKeys: privateKeys,
		config:      config,
	}

	return
}

// nameOfHash returns the OpenPGP name for the given hash, or the empty string
// if the name isn't known. See RFC 4880, section 9.4.
func nameOfHash(h crypto.Hash) string {
	switch h {
	case crypto.MD5:
		return "MD5"
	case crypto.SHA1:
		return "SHA1"
	case crypto.RIPEMD160:
		return "RIPEMD160"
	case crypto.SHA224:
		return "SHA224"
	case crypto.SHA256:
		return "SHA256"
	case crypto.SHA384:
		return "SHA384"
	case crypto.SHA512:
		return "SHA512"
	}
	return ""
}