private_key.go 8.86 KB
Newer Older
zhangweiwei's avatar
init  
zhangweiwei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package packet

import (
	"bytes"
	"crypto"
	"crypto/cipher"
	"crypto/dsa"
	"crypto/ecdsa"
	"crypto/rsa"
	"crypto/sha1"
	"io"
	"io/ioutil"
	"math/big"
	"strconv"
	"time"

	"golang.org/x/crypto/openpgp/elgamal"
	"golang.org/x/crypto/openpgp/errors"
	"golang.org/x/crypto/openpgp/s2k"
)

// PrivateKey represents a possibly encrypted private key. See RFC 4880,
// section 5.5.3.
type PrivateKey struct {
	PublicKey
	Encrypted     bool // if true then the private key is unavailable until Decrypt has been called.
	encryptedData []byte
	cipher        CipherFunction
	s2k           func(out, in []byte)
	PrivateKey    interface{} // An *{rsa|dsa|ecdsa}.PrivateKey or a crypto.Signer.
	sha1Checksum  bool
	iv            []byte
}

func NewRSAPrivateKey(currentTime time.Time, priv *rsa.PrivateKey) *PrivateKey {
	pk := new(PrivateKey)
	pk.PublicKey = *NewRSAPublicKey(currentTime, &priv.PublicKey)
	pk.PrivateKey = priv
	return pk
}

func NewDSAPrivateKey(currentTime time.Time, priv *dsa.PrivateKey) *PrivateKey {
	pk := new(PrivateKey)
	pk.PublicKey = *NewDSAPublicKey(currentTime, &priv.PublicKey)
	pk.PrivateKey = priv
	return pk
}

func NewElGamalPrivateKey(currentTime time.Time, priv *elgamal.PrivateKey) *PrivateKey {
	pk := new(PrivateKey)
	pk.PublicKey = *NewElGamalPublicKey(currentTime, &priv.PublicKey)
	pk.PrivateKey = priv
	return pk
}

func NewECDSAPrivateKey(currentTime time.Time, priv *ecdsa.PrivateKey) *PrivateKey {
	pk := new(PrivateKey)
	pk.PublicKey = *NewECDSAPublicKey(currentTime, &priv.PublicKey)
	pk.PrivateKey = priv
	return pk
}

// NewSignerPrivateKey creates a PrivateKey from a crypto.Signer that
// implements RSA or ECDSA.
func NewSignerPrivateKey(currentTime time.Time, signer crypto.Signer) *PrivateKey {
	pk := new(PrivateKey)
	// In general, the public Keys should be used as pointers. We still
	// type-switch on the values, for backwards-compatibility.
	switch pubkey := signer.Public().(type) {
	case *rsa.PublicKey:
		pk.PublicKey = *NewRSAPublicKey(currentTime, pubkey)
	case rsa.PublicKey:
		pk.PublicKey = *NewRSAPublicKey(currentTime, &pubkey)
	case *ecdsa.PublicKey:
		pk.PublicKey = *NewECDSAPublicKey(currentTime, pubkey)
	case ecdsa.PublicKey:
		pk.PublicKey = *NewECDSAPublicKey(currentTime, &pubkey)
	default:
		panic("openpgp: unknown crypto.Signer type in NewSignerPrivateKey")
	}
	pk.PrivateKey = signer
	return pk
}

func (pk *PrivateKey) parse(r io.Reader) (err error) {
	err = (&pk.PublicKey).parse(r)
	if err != nil {
		return
	}
	var buf [1]byte
	_, err = readFull(r, buf[:])
	if err != nil {
		return
	}

	s2kType := buf[0]

	switch s2kType {
	case 0:
		pk.s2k = nil
		pk.Encrypted = false
	case 254, 255:
		_, err = readFull(r, buf[:])
		if err != nil {
			return
		}
		pk.cipher = CipherFunction(buf[0])
		pk.Encrypted = true
		pk.s2k, err = s2k.Parse(r)
		if err != nil {
			return
		}
		if s2kType == 254 {
			pk.sha1Checksum = true
		}
	default:
		return errors.UnsupportedError("deprecated s2k function in private key")
	}

	if pk.Encrypted {
		blockSize := pk.cipher.blockSize()
		if blockSize == 0 {
			return errors.UnsupportedError("unsupported cipher in private key: " + strconv.Itoa(int(pk.cipher)))
		}
		pk.iv = make([]byte, blockSize)
		_, err = readFull(r, pk.iv)
		if err != nil {
			return
		}
	}

	pk.encryptedData, err = ioutil.ReadAll(r)
	if err != nil {
		return
	}

	if !pk.Encrypted {
		return pk.parsePrivateKey(pk.encryptedData)
	}

	return
}

func mod64kHash(d []byte) uint16 {
	var h uint16
	for _, b := range d {
		h += uint16(b)
	}
	return h
}

func (pk *PrivateKey) Serialize(w io.Writer) (err error) {
	// TODO(agl): support encrypted private keys
	buf := bytes.NewBuffer(nil)
	err = pk.PublicKey.serializeWithoutHeaders(buf)
	if err != nil {
		return
	}
	buf.WriteByte(0 /* no encryption */)

	privateKeyBuf := bytes.NewBuffer(nil)

	switch priv := pk.PrivateKey.(type) {
	case *rsa.PrivateKey:
		err = serializeRSAPrivateKey(privateKeyBuf, priv)
	case *dsa.PrivateKey:
		err = serializeDSAPrivateKey(privateKeyBuf, priv)
	case *elgamal.PrivateKey:
		err = serializeElGamalPrivateKey(privateKeyBuf, priv)
	case *ecdsa.PrivateKey:
		err = serializeECDSAPrivateKey(privateKeyBuf, priv)
	default:
		err = errors.InvalidArgumentError("unknown private key type")
	}
	if err != nil {
		return
	}

	ptype := packetTypePrivateKey
	contents := buf.Bytes()
	privateKeyBytes := privateKeyBuf.Bytes()
	if pk.IsSubkey {
		ptype = packetTypePrivateSubkey
	}
	err = serializeHeader(w, ptype, len(contents)+len(privateKeyBytes)+2)
	if err != nil {
		return
	}
	_, err = w.Write(contents)
	if err != nil {
		return
	}
	_, err = w.Write(privateKeyBytes)
	if err != nil {
		return
	}

	checksum := mod64kHash(privateKeyBytes)
	var checksumBytes [2]byte
	checksumBytes[0] = byte(checksum >> 8)
	checksumBytes[1] = byte(checksum)
	_, err = w.Write(checksumBytes[:])

	return
}

func serializeRSAPrivateKey(w io.Writer, priv *rsa.PrivateKey) error {
	err := writeBig(w, priv.D)
	if err != nil {
		return err
	}
	err = writeBig(w, priv.Primes[1])
	if err != nil {
		return err
	}
	err = writeBig(w, priv.Primes[0])
	if err != nil {
		return err
	}
	return writeBig(w, priv.Precomputed.Qinv)
}

func serializeDSAPrivateKey(w io.Writer, priv *dsa.PrivateKey) error {
	return writeBig(w, priv.X)
}

func serializeElGamalPrivateKey(w io.Writer, priv *elgamal.PrivateKey) error {
	return writeBig(w, priv.X)
}

func serializeECDSAPrivateKey(w io.Writer, priv *ecdsa.PrivateKey) error {
	return writeBig(w, priv.D)
}

// Decrypt decrypts an encrypted private key using a passphrase.
func (pk *PrivateKey) Decrypt(passphrase []byte) error {
	if !pk.Encrypted {
		return nil
	}

	key := make([]byte, pk.cipher.KeySize())
	pk.s2k(key, passphrase)
	block := pk.cipher.new(key)
	cfb := cipher.NewCFBDecrypter(block, pk.iv)

	data := make([]byte, len(pk.encryptedData))
	cfb.XORKeyStream(data, pk.encryptedData)

	if pk.sha1Checksum {
		if len(data) < sha1.Size {
			return errors.StructuralError("truncated private key data")
		}
		h := sha1.New()
		h.Write(data[:len(data)-sha1.Size])
		sum := h.Sum(nil)
		if !bytes.Equal(sum, data[len(data)-sha1.Size:]) {
			return errors.StructuralError("private key checksum failure")
		}
		data = data[:len(data)-sha1.Size]
	} else {
		if len(data) < 2 {
			return errors.StructuralError("truncated private key data")
		}
		var sum uint16
		for i := 0; i < len(data)-2; i++ {
			sum += uint16(data[i])
		}
		if data[len(data)-2] != uint8(sum>>8) ||
			data[len(data)-1] != uint8(sum) {
			return errors.StructuralError("private key checksum failure")
		}
		data = data[:len(data)-2]
	}

	return pk.parsePrivateKey(data)
}

func (pk *PrivateKey) parsePrivateKey(data []byte) (err error) {
	switch pk.PublicKey.PubKeyAlgo {
	case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoRSAEncryptOnly:
		return pk.parseRSAPrivateKey(data)
	case PubKeyAlgoDSA:
		return pk.parseDSAPrivateKey(data)
	case PubKeyAlgoElGamal:
		return pk.parseElGamalPrivateKey(data)
	case PubKeyAlgoECDSA:
		return pk.parseECDSAPrivateKey(data)
	}
	panic("impossible")
}

func (pk *PrivateKey) parseRSAPrivateKey(data []byte) (err error) {
	rsaPub := pk.PublicKey.PublicKey.(*rsa.PublicKey)
	rsaPriv := new(rsa.PrivateKey)
	rsaPriv.PublicKey = *rsaPub

	buf := bytes.NewBuffer(data)
	d, _, err := readMPI(buf)
	if err != nil {
		return
	}
	p, _, err := readMPI(buf)
	if err != nil {
		return
	}
	q, _, err := readMPI(buf)
	if err != nil {
		return
	}

	rsaPriv.D = new(big.Int).SetBytes(d)
	rsaPriv.Primes = make([]*big.Int, 2)
	rsaPriv.Primes[0] = new(big.Int).SetBytes(p)
	rsaPriv.Primes[1] = new(big.Int).SetBytes(q)
	if err := rsaPriv.Validate(); err != nil {
		return err
	}
	rsaPriv.Precompute()
	pk.PrivateKey = rsaPriv
	pk.Encrypted = false
	pk.encryptedData = nil

	return nil
}

func (pk *PrivateKey) parseDSAPrivateKey(data []byte) (err error) {
	dsaPub := pk.PublicKey.PublicKey.(*dsa.PublicKey)
	dsaPriv := new(dsa.PrivateKey)
	dsaPriv.PublicKey = *dsaPub

	buf := bytes.NewBuffer(data)
	x, _, err := readMPI(buf)
	if err != nil {
		return
	}

	dsaPriv.X = new(big.Int).SetBytes(x)
	pk.PrivateKey = dsaPriv
	pk.Encrypted = false
	pk.encryptedData = nil

	return nil
}

func (pk *PrivateKey) parseElGamalPrivateKey(data []byte) (err error) {
	pub := pk.PublicKey.PublicKey.(*elgamal.PublicKey)
	priv := new(elgamal.PrivateKey)
	priv.PublicKey = *pub

	buf := bytes.NewBuffer(data)
	x, _, err := readMPI(buf)
	if err != nil {
		return
	}

	priv.X = new(big.Int).SetBytes(x)
	pk.PrivateKey = priv
	pk.Encrypted = false
	pk.encryptedData = nil

	return nil
}

func (pk *PrivateKey) parseECDSAPrivateKey(data []byte) (err error) {
	ecdsaPub := pk.PublicKey.PublicKey.(*ecdsa.PublicKey)

	buf := bytes.NewBuffer(data)
	d, _, err := readMPI(buf)
	if err != nil {
		return
	}

	pk.PrivateKey = &ecdsa.PrivateKey{
		PublicKey: *ecdsaPub,
		D:         new(big.Int).SetBytes(d),
	}
	pk.Encrypted = false
	pk.encryptedData = nil

	return nil
}