sha3_s390x.go 6.97 KB
Newer Older
zhangweiwei's avatar
init  
zhangweiwei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

//+build !gccgo,!appengine

package sha3

// This file contains code for using the 'compute intermediate
// message digest' (KIMD) and 'compute last message digest' (KLMD)
// instructions to compute SHA-3 and SHAKE hashes on IBM Z.

import (
	"hash"
)

// codes represent 7-bit KIMD/KLMD function codes as defined in
// the Principles of Operation.
type code uint64

const (
	// function codes for KIMD/KLMD
	sha3_224  code = 32
	sha3_256       = 33
	sha3_384       = 34
	sha3_512       = 35
	shake_128      = 36
	shake_256      = 37
	nopad          = 0x100
)

// hasMSA6 reports whether the machine supports the SHA-3 and SHAKE function
// codes, as defined in message-security-assist extension 6.
func hasMSA6() bool

// hasAsm caches the result of hasMSA6 (which might be expensive to call).
var hasAsm = hasMSA6()

// kimd is a wrapper for the 'compute intermediate message digest' instruction.
// src must be a multiple of the rate for the given function code.
//go:noescape
func kimd(function code, chain *[200]byte, src []byte)

// klmd is a wrapper for the 'compute last message digest' instruction.
// src padding is handled by the instruction.
//go:noescape
func klmd(function code, chain *[200]byte, dst, src []byte)

type asmState struct {
	a         [200]byte       // 1600 bit state
	buf       []byte          // care must be taken to ensure cap(buf) is a multiple of rate
	rate      int             // equivalent to block size
	storage   [3072]byte      // underlying storage for buf
	outputLen int             // output length if fixed, 0 if not
	function  code            // KIMD/KLMD function code
	state     spongeDirection // whether the sponge is absorbing or squeezing
}

func newAsmState(function code) *asmState {
	var s asmState
	s.function = function
	switch function {
	case sha3_224:
		s.rate = 144
		s.outputLen = 28
	case sha3_256:
		s.rate = 136
		s.outputLen = 32
	case sha3_384:
		s.rate = 104
		s.outputLen = 48
	case sha3_512:
		s.rate = 72
		s.outputLen = 64
	case shake_128:
		s.rate = 168
	case shake_256:
		s.rate = 136
	default:
		panic("sha3: unrecognized function code")
	}

	// limit s.buf size to a multiple of s.rate
	s.resetBuf()
	return &s
}

func (s *asmState) clone() *asmState {
	c := *s
	c.buf = c.storage[:len(s.buf):cap(s.buf)]
	return &c
}

// copyIntoBuf copies b into buf. It will panic if there is not enough space to
// store all of b.
func (s *asmState) copyIntoBuf(b []byte) {
	bufLen := len(s.buf)
	s.buf = s.buf[:len(s.buf)+len(b)]
	copy(s.buf[bufLen:], b)
}

// resetBuf points buf at storage, sets the length to 0 and sets cap to be a
// multiple of the rate.
func (s *asmState) resetBuf() {
	max := (cap(s.storage) / s.rate) * s.rate
	s.buf = s.storage[:0:max]
}

// Write (via the embedded io.Writer interface) adds more data to the running hash.
// It never returns an error.
func (s *asmState) Write(b []byte) (int, error) {
	if s.state != spongeAbsorbing {
		panic("sha3: write to sponge after read")
	}
	length := len(b)
	for len(b) > 0 {
		if len(s.buf) == 0 && len(b) >= cap(s.buf) {
			// Hash the data directly and push any remaining bytes
			// into the buffer.
			remainder := len(s.buf) % s.rate
			kimd(s.function, &s.a, b[:len(b)-remainder])
			if remainder != 0 {
				s.copyIntoBuf(b[len(b)-remainder:])
			}
			return length, nil
		}

		if len(s.buf) == cap(s.buf) {
			// flush the buffer
			kimd(s.function, &s.a, s.buf)
			s.buf = s.buf[:0]
		}

		// copy as much as we can into the buffer
		n := len(b)
		if len(b) > cap(s.buf)-len(s.buf) {
			n = cap(s.buf) - len(s.buf)
		}
		s.copyIntoBuf(b[:n])
		b = b[n:]
	}
	return length, nil
}

// Read squeezes an arbitrary number of bytes from the sponge.
func (s *asmState) Read(out []byte) (n int, err error) {
	n = len(out)

	// need to pad if we were absorbing
	if s.state == spongeAbsorbing {
		s.state = spongeSqueezing

		// write hash directly into out if possible
		if len(out)%s.rate == 0 {
			klmd(s.function, &s.a, out, s.buf) // len(out) may be 0
			s.buf = s.buf[:0]
			return
		}

		// write hash into buffer
		max := cap(s.buf)
		if max > len(out) {
			max = (len(out)/s.rate)*s.rate + s.rate
		}
		klmd(s.function, &s.a, s.buf[:max], s.buf)
		s.buf = s.buf[:max]
	}

	for len(out) > 0 {
		// flush the buffer
		if len(s.buf) != 0 {
			c := copy(out, s.buf)
			out = out[c:]
			s.buf = s.buf[c:]
			continue
		}

		// write hash directly into out if possible
		if len(out)%s.rate == 0 {
			klmd(s.function|nopad, &s.a, out, nil)
			return
		}

		// write hash into buffer
		s.resetBuf()
		if cap(s.buf) > len(out) {
			s.buf = s.buf[:(len(out)/s.rate)*s.rate+s.rate]
		}
		klmd(s.function|nopad, &s.a, s.buf, nil)
	}
	return
}

// Sum appends the current hash to b and returns the resulting slice.
// It does not change the underlying hash state.
func (s *asmState) Sum(b []byte) []byte {
	if s.outputLen == 0 {
		panic("sha3: cannot call Sum on SHAKE functions")
	}

	// Copy the state to preserve the original.
	a := s.a

	// Hash the buffer. Note that we don't clear it because we
	// aren't updating the state.
	klmd(s.function, &a, nil, s.buf)
	return append(b, a[:s.outputLen]...)
}

// Reset resets the Hash to its initial state.
func (s *asmState) Reset() {
	for i := range s.a {
		s.a[i] = 0
	}
	s.resetBuf()
	s.state = spongeAbsorbing
}

// Size returns the number of bytes Sum will return.
func (s *asmState) Size() int {
	return s.outputLen
}

// BlockSize returns the hash's underlying block size.
// The Write method must be able to accept any amount
// of data, but it may operate more efficiently if all writes
// are a multiple of the block size.
func (s *asmState) BlockSize() int {
	return s.rate
}

// Clone returns a copy of the ShakeHash in its current state.
func (s *asmState) Clone() ShakeHash {
	return s.clone()
}

// new224Asm returns an assembly implementation of SHA3-224 if available,
// otherwise it returns nil.
func new224Asm() hash.Hash {
	if hasAsm {
		return newAsmState(sha3_224)
	}
	return nil
}

// new256Asm returns an assembly implementation of SHA3-256 if available,
// otherwise it returns nil.
func new256Asm() hash.Hash {
	if hasAsm {
		return newAsmState(sha3_256)
	}
	return nil
}

// new384Asm returns an assembly implementation of SHA3-384 if available,
// otherwise it returns nil.
func new384Asm() hash.Hash {
	if hasAsm {
		return newAsmState(sha3_384)
	}
	return nil
}

// new512Asm returns an assembly implementation of SHA3-512 if available,
// otherwise it returns nil.
func new512Asm() hash.Hash {
	if hasAsm {
		return newAsmState(sha3_512)
	}
	return nil
}

// newShake128Asm returns an assembly implementation of SHAKE-128 if available,
// otherwise it returns nil.
func newShake128Asm() ShakeHash {
	if hasAsm {
		return newAsmState(shake_128)
	}
	return nil
}

// newShake256Asm returns an assembly implementation of SHAKE-256 if available,
// otherwise it returns nil.
func newShake256Asm() ShakeHash {
	if hasAsm {
		return newAsmState(shake_256)
	}
	return nil
}