twofish.go 11.7 KB
Newer Older
zhangweiwei's avatar
init  
zhangweiwei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package twofish implements Bruce Schneier's Twofish encryption algorithm.
package twofish // import "golang.org/x/crypto/twofish"

// Twofish is defined in https://www.schneier.com/paper-twofish-paper.pdf [TWOFISH]

// This code is a port of the LibTom C implementation.
// See http://libtom.org/?page=features&newsitems=5&whatfile=crypt.
// LibTomCrypt is free for all purposes under the public domain.
// It was heavily inspired by the go blowfish package.

import "strconv"

// BlockSize is the constant block size of Twofish.
const BlockSize = 16

const mdsPolynomial = 0x169 // x^8 + x^6 + x^5 + x^3 + 1, see [TWOFISH] 4.2
const rsPolynomial = 0x14d  // x^8 + x^6 + x^3 + x^2 + 1, see [TWOFISH] 4.3

// A Cipher is an instance of Twofish encryption using a particular key.
type Cipher struct {
	s [4][256]uint32
	k [40]uint32
}

type KeySizeError int

func (k KeySizeError) Error() string {
	return "crypto/twofish: invalid key size " + strconv.Itoa(int(k))
}

// NewCipher creates and returns a Cipher.
// The key argument should be the Twofish key, 16, 24 or 32 bytes.
func NewCipher(key []byte) (*Cipher, error) {
	keylen := len(key)

	if keylen != 16 && keylen != 24 && keylen != 32 {
		return nil, KeySizeError(keylen)
	}

	// k is the number of 64 bit words in key
	k := keylen / 8

	// Create the S[..] words
	var S [4 * 4]byte
	for i := 0; i < k; i++ {
		// Computes [y0 y1 y2 y3] = rs . [x0 x1 x2 x3 x4 x5 x6 x7]
		for j, rsRow := range rs {
			for k, rsVal := range rsRow {
				S[4*i+j] ^= gfMult(key[8*i+k], rsVal, rsPolynomial)
			}
		}
	}

	// Calculate subkeys
	c := new(Cipher)
	var tmp [4]byte
	for i := byte(0); i < 20; i++ {
		// A = h(p * 2x, Me)
		for j := range tmp {
			tmp[j] = 2 * i
		}
		A := h(tmp[:], key, 0)

		// B = rolc(h(p * (2x + 1), Mo), 8)
		for j := range tmp {
			tmp[j] = 2*i + 1
		}
		B := h(tmp[:], key, 1)
		B = rol(B, 8)

		c.k[2*i] = A + B

		// K[2i+1] = (A + 2B) <<< 9
		c.k[2*i+1] = rol(2*B+A, 9)
	}

	// Calculate sboxes
	switch k {
	case 2:
		for i := range c.s[0] {
			c.s[0][i] = mdsColumnMult(sbox[1][sbox[0][sbox[0][byte(i)]^S[0]]^S[4]], 0)
			c.s[1][i] = mdsColumnMult(sbox[0][sbox[0][sbox[1][byte(i)]^S[1]]^S[5]], 1)
			c.s[2][i] = mdsColumnMult(sbox[1][sbox[1][sbox[0][byte(i)]^S[2]]^S[6]], 2)
			c.s[3][i] = mdsColumnMult(sbox[0][sbox[1][sbox[1][byte(i)]^S[3]]^S[7]], 3)
		}
	case 3:
		for i := range c.s[0] {
			c.s[0][i] = mdsColumnMult(sbox[1][sbox[0][sbox[0][sbox[1][byte(i)]^S[0]]^S[4]]^S[8]], 0)
			c.s[1][i] = mdsColumnMult(sbox[0][sbox[0][sbox[1][sbox[1][byte(i)]^S[1]]^S[5]]^S[9]], 1)
			c.s[2][i] = mdsColumnMult(sbox[1][sbox[1][sbox[0][sbox[0][byte(i)]^S[2]]^S[6]]^S[10]], 2)
			c.s[3][i] = mdsColumnMult(sbox[0][sbox[1][sbox[1][sbox[0][byte(i)]^S[3]]^S[7]]^S[11]], 3)
		}
	default:
		for i := range c.s[0] {
			c.s[0][i] = mdsColumnMult(sbox[1][sbox[0][sbox[0][sbox[1][sbox[1][byte(i)]^S[0]]^S[4]]^S[8]]^S[12]], 0)
			c.s[1][i] = mdsColumnMult(sbox[0][sbox[0][sbox[1][sbox[1][sbox[0][byte(i)]^S[1]]^S[5]]^S[9]]^S[13]], 1)
			c.s[2][i] = mdsColumnMult(sbox[1][sbox[1][sbox[0][sbox[0][sbox[0][byte(i)]^S[2]]^S[6]]^S[10]]^S[14]], 2)
			c.s[3][i] = mdsColumnMult(sbox[0][sbox[1][sbox[1][sbox[0][sbox[1][byte(i)]^S[3]]^S[7]]^S[11]]^S[15]], 3)
		}
	}

	return c, nil
}

// BlockSize returns the Twofish block size, 16 bytes.
func (c *Cipher) BlockSize() int { return BlockSize }

// store32l stores src in dst in little-endian form.
func store32l(dst []byte, src uint32) {
	dst[0] = byte(src)
	dst[1] = byte(src >> 8)
	dst[2] = byte(src >> 16)
	dst[3] = byte(src >> 24)
	return
}

// load32l reads a little-endian uint32 from src.
func load32l(src []byte) uint32 {
	return uint32(src[0]) | uint32(src[1])<<8 | uint32(src[2])<<16 | uint32(src[3])<<24
}

// rol returns x after a left circular rotation of y bits.
func rol(x, y uint32) uint32 {
	return (x << (y & 31)) | (x >> (32 - (y & 31)))
}

// ror returns x after a right circular rotation of y bits.
func ror(x, y uint32) uint32 {
	return (x >> (y & 31)) | (x << (32 - (y & 31)))
}

// The RS matrix. See [TWOFISH] 4.3
var rs = [4][8]byte{
	{0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E},
	{0xA4, 0x56, 0x82, 0xF3, 0x1E, 0xC6, 0x68, 0xE5},
	{0x02, 0xA1, 0xFC, 0xC1, 0x47, 0xAE, 0x3D, 0x19},
	{0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E, 0x03},
}

// sbox tables
var sbox = [2][256]byte{
	{
		0xa9, 0x67, 0xb3, 0xe8, 0x04, 0xfd, 0xa3, 0x76, 0x9a, 0x92, 0x80, 0x78, 0xe4, 0xdd, 0xd1, 0x38,
		0x0d, 0xc6, 0x35, 0x98, 0x18, 0xf7, 0xec, 0x6c, 0x43, 0x75, 0x37, 0x26, 0xfa, 0x13, 0x94, 0x48,
		0xf2, 0xd0, 0x8b, 0x30, 0x84, 0x54, 0xdf, 0x23, 0x19, 0x5b, 0x3d, 0x59, 0xf3, 0xae, 0xa2, 0x82,
		0x63, 0x01, 0x83, 0x2e, 0xd9, 0x51, 0x9b, 0x7c, 0xa6, 0xeb, 0xa5, 0xbe, 0x16, 0x0c, 0xe3, 0x61,
		0xc0, 0x8c, 0x3a, 0xf5, 0x73, 0x2c, 0x25, 0x0b, 0xbb, 0x4e, 0x89, 0x6b, 0x53, 0x6a, 0xb4, 0xf1,
		0xe1, 0xe6, 0xbd, 0x45, 0xe2, 0xf4, 0xb6, 0x66, 0xcc, 0x95, 0x03, 0x56, 0xd4, 0x1c, 0x1e, 0xd7,
		0xfb, 0xc3, 0x8e, 0xb5, 0xe9, 0xcf, 0xbf, 0xba, 0xea, 0x77, 0x39, 0xaf, 0x33, 0xc9, 0x62, 0x71,
		0x81, 0x79, 0x09, 0xad, 0x24, 0xcd, 0xf9, 0xd8, 0xe5, 0xc5, 0xb9, 0x4d, 0x44, 0x08, 0x86, 0xe7,
		0xa1, 0x1d, 0xaa, 0xed, 0x06, 0x70, 0xb2, 0xd2, 0x41, 0x7b, 0xa0, 0x11, 0x31, 0xc2, 0x27, 0x90,
		0x20, 0xf6, 0x60, 0xff, 0x96, 0x5c, 0xb1, 0xab, 0x9e, 0x9c, 0x52, 0x1b, 0x5f, 0x93, 0x0a, 0xef,
		0x91, 0x85, 0x49, 0xee, 0x2d, 0x4f, 0x8f, 0x3b, 0x47, 0x87, 0x6d, 0x46, 0xd6, 0x3e, 0x69, 0x64,
		0x2a, 0xce, 0xcb, 0x2f, 0xfc, 0x97, 0x05, 0x7a, 0xac, 0x7f, 0xd5, 0x1a, 0x4b, 0x0e, 0xa7, 0x5a,
		0x28, 0x14, 0x3f, 0x29, 0x88, 0x3c, 0x4c, 0x02, 0xb8, 0xda, 0xb0, 0x17, 0x55, 0x1f, 0x8a, 0x7d,
		0x57, 0xc7, 0x8d, 0x74, 0xb7, 0xc4, 0x9f, 0x72, 0x7e, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34,
		0x6e, 0x50, 0xde, 0x68, 0x65, 0xbc, 0xdb, 0xf8, 0xc8, 0xa8, 0x2b, 0x40, 0xdc, 0xfe, 0x32, 0xa4,
		0xca, 0x10, 0x21, 0xf0, 0xd3, 0x5d, 0x0f, 0x00, 0x6f, 0x9d, 0x36, 0x42, 0x4a, 0x5e, 0xc1, 0xe0,
	},
	{
		0x75, 0xf3, 0xc6, 0xf4, 0xdb, 0x7b, 0xfb, 0xc8, 0x4a, 0xd3, 0xe6, 0x6b, 0x45, 0x7d, 0xe8, 0x4b,
		0xd6, 0x32, 0xd8, 0xfd, 0x37, 0x71, 0xf1, 0xe1, 0x30, 0x0f, 0xf8, 0x1b, 0x87, 0xfa, 0x06, 0x3f,
		0x5e, 0xba, 0xae, 0x5b, 0x8a, 0x00, 0xbc, 0x9d, 0x6d, 0xc1, 0xb1, 0x0e, 0x80, 0x5d, 0xd2, 0xd5,
		0xa0, 0x84, 0x07, 0x14, 0xb5, 0x90, 0x2c, 0xa3, 0xb2, 0x73, 0x4c, 0x54, 0x92, 0x74, 0x36, 0x51,
		0x38, 0xb0, 0xbd, 0x5a, 0xfc, 0x60, 0x62, 0x96, 0x6c, 0x42, 0xf7, 0x10, 0x7c, 0x28, 0x27, 0x8c,
		0x13, 0x95, 0x9c, 0xc7, 0x24, 0x46, 0x3b, 0x70, 0xca, 0xe3, 0x85, 0xcb, 0x11, 0xd0, 0x93, 0xb8,
		0xa6, 0x83, 0x20, 0xff, 0x9f, 0x77, 0xc3, 0xcc, 0x03, 0x6f, 0x08, 0xbf, 0x40, 0xe7, 0x2b, 0xe2,
		0x79, 0x0c, 0xaa, 0x82, 0x41, 0x3a, 0xea, 0xb9, 0xe4, 0x9a, 0xa4, 0x97, 0x7e, 0xda, 0x7a, 0x17,
		0x66, 0x94, 0xa1, 0x1d, 0x3d, 0xf0, 0xde, 0xb3, 0x0b, 0x72, 0xa7, 0x1c, 0xef, 0xd1, 0x53, 0x3e,
		0x8f, 0x33, 0x26, 0x5f, 0xec, 0x76, 0x2a, 0x49, 0x81, 0x88, 0xee, 0x21, 0xc4, 0x1a, 0xeb, 0xd9,
		0xc5, 0x39, 0x99, 0xcd, 0xad, 0x31, 0x8b, 0x01, 0x18, 0x23, 0xdd, 0x1f, 0x4e, 0x2d, 0xf9, 0x48,
		0x4f, 0xf2, 0x65, 0x8e, 0x78, 0x5c, 0x58, 0x19, 0x8d, 0xe5, 0x98, 0x57, 0x67, 0x7f, 0x05, 0x64,
		0xaf, 0x63, 0xb6, 0xfe, 0xf5, 0xb7, 0x3c, 0xa5, 0xce, 0xe9, 0x68, 0x44, 0xe0, 0x4d, 0x43, 0x69,
		0x29, 0x2e, 0xac, 0x15, 0x59, 0xa8, 0x0a, 0x9e, 0x6e, 0x47, 0xdf, 0x34, 0x35, 0x6a, 0xcf, 0xdc,
		0x22, 0xc9, 0xc0, 0x9b, 0x89, 0xd4, 0xed, 0xab, 0x12, 0xa2, 0x0d, 0x52, 0xbb, 0x02, 0x2f, 0xa9,
		0xd7, 0x61, 0x1e, 0xb4, 0x50, 0x04, 0xf6, 0xc2, 0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xbe, 0x91,
	},
}

// gfMult returns a·b in GF(2^8)/p
func gfMult(a, b byte, p uint32) byte {
	B := [2]uint32{0, uint32(b)}
	P := [2]uint32{0, p}
	var result uint32

	// branchless GF multiplier
	for i := 0; i < 7; i++ {
		result ^= B[a&1]
		a >>= 1
		B[1] = P[B[1]>>7] ^ (B[1] << 1)
	}
	result ^= B[a&1]
	return byte(result)
}

// mdsColumnMult calculates y{col} where [y0 y1 y2 y3] = MDS · [x0]
func mdsColumnMult(in byte, col int) uint32 {
	mul01 := in
	mul5B := gfMult(in, 0x5B, mdsPolynomial)
	mulEF := gfMult(in, 0xEF, mdsPolynomial)

	switch col {
	case 0:
		return uint32(mul01) | uint32(mul5B)<<8 | uint32(mulEF)<<16 | uint32(mulEF)<<24
	case 1:
		return uint32(mulEF) | uint32(mulEF)<<8 | uint32(mul5B)<<16 | uint32(mul01)<<24
	case 2:
		return uint32(mul5B) | uint32(mulEF)<<8 | uint32(mul01)<<16 | uint32(mulEF)<<24
	case 3:
		return uint32(mul5B) | uint32(mul01)<<8 | uint32(mulEF)<<16 | uint32(mul5B)<<24
	}

	panic("unreachable")
}

// h implements the S-box generation function. See [TWOFISH] 4.3.5
func h(in, key []byte, offset int) uint32 {
	var y [4]byte
	for x := range y {
		y[x] = in[x]
	}
	switch len(key) / 8 {
	case 4:
		y[0] = sbox[1][y[0]] ^ key[4*(6+offset)+0]
		y[1] = sbox[0][y[1]] ^ key[4*(6+offset)+1]
		y[2] = sbox[0][y[2]] ^ key[4*(6+offset)+2]
		y[3] = sbox[1][y[3]] ^ key[4*(6+offset)+3]
		fallthrough
	case 3:
		y[0] = sbox[1][y[0]] ^ key[4*(4+offset)+0]
		y[1] = sbox[1][y[1]] ^ key[4*(4+offset)+1]
		y[2] = sbox[0][y[2]] ^ key[4*(4+offset)+2]
		y[3] = sbox[0][y[3]] ^ key[4*(4+offset)+3]
		fallthrough
	case 2:
		y[0] = sbox[1][sbox[0][sbox[0][y[0]]^key[4*(2+offset)+0]]^key[4*(0+offset)+0]]
		y[1] = sbox[0][sbox[0][sbox[1][y[1]]^key[4*(2+offset)+1]]^key[4*(0+offset)+1]]
		y[2] = sbox[1][sbox[1][sbox[0][y[2]]^key[4*(2+offset)+2]]^key[4*(0+offset)+2]]
		y[3] = sbox[0][sbox[1][sbox[1][y[3]]^key[4*(2+offset)+3]]^key[4*(0+offset)+3]]
	}
	// [y0 y1 y2 y3] = MDS . [x0 x1 x2 x3]
	var mdsMult uint32
	for i := range y {
		mdsMult ^= mdsColumnMult(y[i], i)
	}
	return mdsMult
}

// Encrypt encrypts a 16-byte block from src to dst, which may overlap.
// Note that for amounts of data larger than a block,
// it is not safe to just call Encrypt on successive blocks;
// instead, use an encryption mode like CBC (see crypto/cipher/cbc.go).
func (c *Cipher) Encrypt(dst, src []byte) {
	S1 := c.s[0]
	S2 := c.s[1]
	S3 := c.s[2]
	S4 := c.s[3]

	// Load input
	ia := load32l(src[0:4])
	ib := load32l(src[4:8])
	ic := load32l(src[8:12])
	id := load32l(src[12:16])

	// Pre-whitening
	ia ^= c.k[0]
	ib ^= c.k[1]
	ic ^= c.k[2]
	id ^= c.k[3]

	for i := 0; i < 8; i++ {
		k := c.k[8+i*4 : 12+i*4]
		t2 := S2[byte(ib)] ^ S3[byte(ib>>8)] ^ S4[byte(ib>>16)] ^ S1[byte(ib>>24)]
		t1 := S1[byte(ia)] ^ S2[byte(ia>>8)] ^ S3[byte(ia>>16)] ^ S4[byte(ia>>24)] + t2
		ic = ror(ic^(t1+k[0]), 1)
		id = rol(id, 1) ^ (t2 + t1 + k[1])

		t2 = S2[byte(id)] ^ S3[byte(id>>8)] ^ S4[byte(id>>16)] ^ S1[byte(id>>24)]
		t1 = S1[byte(ic)] ^ S2[byte(ic>>8)] ^ S3[byte(ic>>16)] ^ S4[byte(ic>>24)] + t2
		ia = ror(ia^(t1+k[2]), 1)
		ib = rol(ib, 1) ^ (t2 + t1 + k[3])
	}

	// Output with "undo last swap"
	ta := ic ^ c.k[4]
	tb := id ^ c.k[5]
	tc := ia ^ c.k[6]
	td := ib ^ c.k[7]

	store32l(dst[0:4], ta)
	store32l(dst[4:8], tb)
	store32l(dst[8:12], tc)
	store32l(dst[12:16], td)
}

// Decrypt decrypts a 16-byte block from src to dst, which may overlap.
func (c *Cipher) Decrypt(dst, src []byte) {
	S1 := c.s[0]
	S2 := c.s[1]
	S3 := c.s[2]
	S4 := c.s[3]

	// Load input
	ta := load32l(src[0:4])
	tb := load32l(src[4:8])
	tc := load32l(src[8:12])
	td := load32l(src[12:16])

	// Undo undo final swap
	ia := tc ^ c.k[6]
	ib := td ^ c.k[7]
	ic := ta ^ c.k[4]
	id := tb ^ c.k[5]

	for i := 8; i > 0; i-- {
		k := c.k[4+i*4 : 8+i*4]
		t2 := S2[byte(id)] ^ S3[byte(id>>8)] ^ S4[byte(id>>16)] ^ S1[byte(id>>24)]
		t1 := S1[byte(ic)] ^ S2[byte(ic>>8)] ^ S3[byte(ic>>16)] ^ S4[byte(ic>>24)] + t2
		ia = rol(ia, 1) ^ (t1 + k[2])
		ib = ror(ib^(t2+t1+k[3]), 1)

		t2 = S2[byte(ib)] ^ S3[byte(ib>>8)] ^ S4[byte(ib>>16)] ^ S1[byte(ib>>24)]
		t1 = S1[byte(ia)] ^ S2[byte(ia>>8)] ^ S3[byte(ia>>16)] ^ S4[byte(ia>>24)] + t2
		ic = rol(ic, 1) ^ (t1 + k[0])
		id = ror(id^(t2+t1+k[1]), 1)
	}

	// Undo pre-whitening
	ia ^= c.k[0]
	ib ^= c.k[1]
	ic ^= c.k[2]
	id ^= c.k[3]

	store32l(dst[0:4], ia)
	store32l(dst[4:8], ib)
	store32l(dst[8:12], ic)
	store32l(dst[12:16], id)
}