xts.go 4.64 KB
Newer Older
zhangweiwei's avatar
init  
zhangweiwei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package xts implements the XTS cipher mode as specified in IEEE P1619/D16.
//
// XTS mode is typically used for disk encryption, which presents a number of
// novel problems that make more common modes inapplicable. The disk is
// conceptually an array of sectors and we must be able to encrypt and decrypt
// a sector in isolation. However, an attacker must not be able to transpose
// two sectors of plaintext by transposing their ciphertext.
//
// XTS wraps a block cipher with Rogaway's XEX mode in order to build a
// tweakable block cipher. This allows each sector to have a unique tweak and
// effectively create a unique key for each sector.
//
// XTS does not provide any authentication. An attacker can manipulate the
// ciphertext and randomise a block (16 bytes) of the plaintext.
//
// (Note: this package does not implement ciphertext-stealing so sectors must
// be a multiple of 16 bytes.)
package xts // import "golang.org/x/crypto/xts"

import (
	"crypto/cipher"
	"encoding/binary"
	"errors"

	"golang.org/x/crypto/internal/subtle"
)

// Cipher contains an expanded key structure. It doesn't contain mutable state
// and therefore can be used concurrently.
type Cipher struct {
	k1, k2 cipher.Block
}

// blockSize is the block size that the underlying cipher must have. XTS is
// only defined for 16-byte ciphers.
const blockSize = 16

// NewCipher creates a Cipher given a function for creating the underlying
// block cipher (which must have a block size of 16 bytes). The key must be
// twice the length of the underlying cipher's key.
func NewCipher(cipherFunc func([]byte) (cipher.Block, error), key []byte) (c *Cipher, err error) {
	c = new(Cipher)
	if c.k1, err = cipherFunc(key[:len(key)/2]); err != nil {
		return
	}
	c.k2, err = cipherFunc(key[len(key)/2:])

	if c.k1.BlockSize() != blockSize {
		err = errors.New("xts: cipher does not have a block size of 16")
	}

	return
}

// Encrypt encrypts a sector of plaintext and puts the result into ciphertext.
// Plaintext and ciphertext must overlap entirely or not at all.
// Sectors must be a multiple of 16 bytes and less than 2²⁴ bytes.
func (c *Cipher) Encrypt(ciphertext, plaintext []byte, sectorNum uint64) {
	if len(ciphertext) < len(plaintext) {
		panic("xts: ciphertext is smaller than plaintext")
	}
	if len(plaintext)%blockSize != 0 {
		panic("xts: plaintext is not a multiple of the block size")
	}
	if subtle.InexactOverlap(ciphertext[:len(plaintext)], plaintext) {
		panic("xts: invalid buffer overlap")
	}

	var tweak [blockSize]byte
	binary.LittleEndian.PutUint64(tweak[:8], sectorNum)

	c.k2.Encrypt(tweak[:], tweak[:])

	for len(plaintext) > 0 {
		for j := range tweak {
			ciphertext[j] = plaintext[j] ^ tweak[j]
		}
		c.k1.Encrypt(ciphertext, ciphertext)
		for j := range tweak {
			ciphertext[j] ^= tweak[j]
		}
		plaintext = plaintext[blockSize:]
		ciphertext = ciphertext[blockSize:]

		mul2(&tweak)
	}
}

// Decrypt decrypts a sector of ciphertext and puts the result into plaintext.
// Plaintext and ciphertext must overlap entirely or not at all.
// Sectors must be a multiple of 16 bytes and less than 2²⁴ bytes.
func (c *Cipher) Decrypt(plaintext, ciphertext []byte, sectorNum uint64) {
	if len(plaintext) < len(ciphertext) {
		panic("xts: plaintext is smaller than ciphertext")
	}
	if len(ciphertext)%blockSize != 0 {
		panic("xts: ciphertext is not a multiple of the block size")
	}
	if subtle.InexactOverlap(plaintext[:len(ciphertext)], ciphertext) {
		panic("xts: invalid buffer overlap")
	}

	var tweak [blockSize]byte
	binary.LittleEndian.PutUint64(tweak[:8], sectorNum)

	c.k2.Encrypt(tweak[:], tweak[:])

	for len(ciphertext) > 0 {
		for j := range tweak {
			plaintext[j] = ciphertext[j] ^ tweak[j]
		}
		c.k1.Decrypt(plaintext, plaintext)
		for j := range tweak {
			plaintext[j] ^= tweak[j]
		}
		plaintext = plaintext[blockSize:]
		ciphertext = ciphertext[blockSize:]

		mul2(&tweak)
	}
}

// mul2 multiplies tweak by 2 in GF(2¹²⁸) with an irreducible polynomial of
// x¹²⁸ + x⁷ + x² + x + 1.
func mul2(tweak *[blockSize]byte) {
	var carryIn byte
	for j := range tweak {
		carryOut := tweak[j] >> 7
		tweak[j] = (tweak[j] << 1) + carryIn
		carryIn = carryOut
	}
	if carryIn != 0 {
		// If we have a carry bit then we need to subtract a multiple
		// of the irreducible polynomial (x¹²⁸ + x⁷ + x² + x + 1).
		// By dropping the carry bit, we're subtracting the x^128 term
		// so all that remains is to subtract x⁷ + x² + x + 1.
		// Subtraction (and addition) in this representation is just
		// XOR.
		tweak[0] ^= 1<<7 | 1<<2 | 1<<1 | 1
	}
}