scale.go 15.4 KB
Newer Older
zhangweiwei's avatar
init  
zhangweiwei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

//go:generate go run gen.go

package draw

import (
	"image"
	"image/color"
	"math"
	"sync"

	"golang.org/x/image/math/f64"
)

// Copy copies the part of the source image defined by src and sr and writes
// the result of a Porter-Duff composition to the part of the destination image
// defined by dst and the translation of sr so that sr.Min translates to dp.
func Copy(dst Image, dp image.Point, src image.Image, sr image.Rectangle, op Op, opts *Options) {
	var o Options
	if opts != nil {
		o = *opts
	}
	dr := sr.Add(dp.Sub(sr.Min))
	if o.DstMask == nil {
		DrawMask(dst, dr, src, sr.Min, o.SrcMask, o.SrcMaskP.Add(sr.Min), op)
	} else {
		NearestNeighbor.Scale(dst, dr, src, sr, op, opts)
	}
}

// Scaler scales the part of the source image defined by src and sr and writes
// the result of a Porter-Duff composition to the part of the destination image
// defined by dst and dr.
//
// A Scaler is safe to use concurrently.
type Scaler interface {
	Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options)
}

// Transformer transforms the part of the source image defined by src and sr
// and writes the result of a Porter-Duff composition to the part of the
// destination image defined by dst and the affine transform m applied to sr.
//
// For example, if m is the matrix
//
// 	m00 m01 m02
// 	m10 m11 m12
//
// then the src-space point (sx, sy) maps to the dst-space point
// (m00*sx + m01*sy + m02, m10*sx + m11*sy + m12).
//
// A Transformer is safe to use concurrently.
type Transformer interface {
	Transform(dst Image, m f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options)
}

// Options are optional parameters to Copy, Scale and Transform.
//
// A nil *Options means to use the default (zero) values of each field.
type Options struct {
	// Masks limit what parts of the dst image are drawn to and what parts of
	// the src image are drawn from.
	//
	// A dst or src mask image having a zero alpha (transparent) pixel value in
	// the respective coordinate space means that dst pixel is entirely
	// unaffected or that src pixel is considered transparent black. A full
	// alpha (opaque) value means that the dst pixel is maximally affected or
	// the src pixel contributes maximally. The default values, nil, are
	// equivalent to fully opaque, infinitely large mask images.
	//
	// The DstMask is otherwise known as a clip mask, and its pixels map 1:1 to
	// the dst image's pixels. DstMaskP in DstMask space corresponds to
	// image.Point{X:0, Y:0} in dst space. For example, when limiting
	// repainting to a 'dirty rectangle', use that image.Rectangle and a zero
	// image.Point as the DstMask and DstMaskP.
	//
	// The SrcMask's pixels map 1:1 to the src image's pixels. SrcMaskP in
	// SrcMask space corresponds to image.Point{X:0, Y:0} in src space. For
	// example, when drawing font glyphs in a uniform color, use an
	// *image.Uniform as the src, and use the glyph atlas image and the
	// per-glyph offset as SrcMask and SrcMaskP:
	//	Copy(dst, dp, image.NewUniform(color), image.Rect(0, 0, glyphWidth, glyphHeight), &Options{
	//		SrcMask:  glyphAtlas,
	//		SrcMaskP: glyphOffset,
	//	})
	DstMask  image.Image
	DstMaskP image.Point
	SrcMask  image.Image
	SrcMaskP image.Point

	// TODO: a smooth vs sharp edges option, for arbitrary rotations?
}

// Interpolator is an interpolation algorithm, when dst and src pixels don't
// have a 1:1 correspondence.
//
// Of the interpolators provided by this package:
//	- NearestNeighbor is fast but usually looks worst.
//	- CatmullRom is slow but usually looks best.
//	- ApproxBiLinear has reasonable speed and quality.
//
// The time taken depends on the size of dr. For kernel interpolators, the
// speed also depends on the size of sr, and so are often slower than
// non-kernel interpolators, especially when scaling down.
type Interpolator interface {
	Scaler
	Transformer
}

// Kernel is an interpolator that blends source pixels weighted by a symmetric
// kernel function.
type Kernel struct {
	// Support is the kernel support and must be >= 0. At(t) is assumed to be
	// zero when t >= Support.
	Support float64
	// At is the kernel function. It will only be called with t in the
	// range [0, Support).
	At func(t float64) float64
}

// Scale implements the Scaler interface.
func (q *Kernel) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) {
	q.newScaler(dr.Dx(), dr.Dy(), sr.Dx(), sr.Dy(), false).Scale(dst, dr, src, sr, op, opts)
}

// NewScaler returns a Scaler that is optimized for scaling multiple times with
// the same fixed destination and source width and height.
func (q *Kernel) NewScaler(dw, dh, sw, sh int) Scaler {
	return q.newScaler(dw, dh, sw, sh, true)
}

func (q *Kernel) newScaler(dw, dh, sw, sh int, usePool bool) Scaler {
	z := &kernelScaler{
		kernel:     q,
		dw:         int32(dw),
		dh:         int32(dh),
		sw:         int32(sw),
		sh:         int32(sh),
		horizontal: newDistrib(q, int32(dw), int32(sw)),
		vertical:   newDistrib(q, int32(dh), int32(sh)),
	}
	if usePool {
		z.pool.New = func() interface{} {
			tmp := z.makeTmpBuf()
			return &tmp
		}
	}
	return z
}

var (
	// NearestNeighbor is the nearest neighbor interpolator. It is very fast,
	// but usually gives very low quality results. When scaling up, the result
	// will look 'blocky'.
	NearestNeighbor = Interpolator(nnInterpolator{})

	// ApproxBiLinear is a mixture of the nearest neighbor and bi-linear
	// interpolators. It is fast, but usually gives medium quality results.
	//
	// It implements bi-linear interpolation when upscaling and a bi-linear
	// blend of the 4 nearest neighbor pixels when downscaling. This yields
	// nicer quality than nearest neighbor interpolation when upscaling, but
	// the time taken is independent of the number of source pixels, unlike the
	// bi-linear interpolator. When downscaling a large image, the performance
	// difference can be significant.
	ApproxBiLinear = Interpolator(ablInterpolator{})

	// BiLinear is the tent kernel. It is slow, but usually gives high quality
	// results.
	BiLinear = &Kernel{1, func(t float64) float64 {
		return 1 - t
	}}

	// CatmullRom is the Catmull-Rom kernel. It is very slow, but usually gives
	// very high quality results.
	//
	// It is an instance of the more general cubic BC-spline kernel with parameters
	// B=0 and C=0.5. See Mitchell and Netravali, "Reconstruction Filters in
	// Computer Graphics", Computer Graphics, Vol. 22, No. 4, pp. 221-228.
	CatmullRom = &Kernel{2, func(t float64) float64 {
		if t < 1 {
			return (1.5*t-2.5)*t*t + 1
		}
		return ((-0.5*t+2.5)*t-4)*t + 2
	}}

	// TODO: a Kaiser-Bessel kernel?
)

type nnInterpolator struct{}

type ablInterpolator struct{}

type kernelScaler struct {
	kernel               *Kernel
	dw, dh, sw, sh       int32
	horizontal, vertical distrib
	pool                 sync.Pool
}

func (z *kernelScaler) makeTmpBuf() [][4]float64 {
	return make([][4]float64, z.dw*z.sh)
}

// source is a range of contribs, their inverse total weight, and that ITW
// divided by 0xffff.
type source struct {
	i, j               int32
	invTotalWeight     float64
	invTotalWeightFFFF float64
}

// contrib is the weight of a column or row.
type contrib struct {
	coord  int32
	weight float64
}

// distrib measures how source pixels are distributed over destination pixels.
type distrib struct {
	// sources are what contribs each column or row in the source image owns,
	// and the total weight of those contribs.
	sources []source
	// contribs are the contributions indexed by sources[s].i and sources[s].j.
	contribs []contrib
}

// newDistrib returns a distrib that distributes sw source columns (or rows)
// over dw destination columns (or rows).
func newDistrib(q *Kernel, dw, sw int32) distrib {
	scale := float64(sw) / float64(dw)
	halfWidth, kernelArgScale := q.Support, 1.0
	// When shrinking, broaden the effective kernel support so that we still
	// visit every source pixel.
	if scale > 1 {
		halfWidth *= scale
		kernelArgScale = 1 / scale
	}

	// Make the sources slice, one source for each column or row, and temporarily
	// appropriate its elements' fields so that invTotalWeight is the scaled
	// coordinate of the source column or row, and i and j are the lower and
	// upper bounds of the range of destination columns or rows affected by the
	// source column or row.
	n, sources := int32(0), make([]source, dw)
	for x := range sources {
		center := (float64(x)+0.5)*scale - 0.5
		i := int32(math.Floor(center - halfWidth))
		if i < 0 {
			i = 0
		}
		j := int32(math.Ceil(center + halfWidth))
		if j > sw {
			j = sw
			if j < i {
				j = i
			}
		}
		sources[x] = source{i: i, j: j, invTotalWeight: center}
		n += j - i
	}

	contribs := make([]contrib, 0, n)
	for k, b := range sources {
		totalWeight := 0.0
		l := int32(len(contribs))
		for coord := b.i; coord < b.j; coord++ {
			t := abs((b.invTotalWeight - float64(coord)) * kernelArgScale)
			if t >= q.Support {
				continue
			}
			weight := q.At(t)
			if weight == 0 {
				continue
			}
			totalWeight += weight
			contribs = append(contribs, contrib{coord, weight})
		}
		totalWeight = 1 / totalWeight
		sources[k] = source{
			i:                  l,
			j:                  int32(len(contribs)),
			invTotalWeight:     totalWeight,
			invTotalWeightFFFF: totalWeight / 0xffff,
		}
	}

	return distrib{sources, contribs}
}

// abs is like math.Abs, but it doesn't care about negative zero, infinities or
// NaNs.
func abs(f float64) float64 {
	if f < 0 {
		f = -f
	}
	return f
}

// ftou converts the range [0.0, 1.0] to [0, 0xffff].
func ftou(f float64) uint16 {
	i := int32(0xffff*f + 0.5)
	if i > 0xffff {
		return 0xffff
	}
	if i > 0 {
		return uint16(i)
	}
	return 0
}

// fffftou converts the range [0.0, 65535.0] to [0, 0xffff].
func fffftou(f float64) uint16 {
	i := int32(f + 0.5)
	if i > 0xffff {
		return 0xffff
	}
	if i > 0 {
		return uint16(i)
	}
	return 0
}

// invert returns the inverse of m.
//
// TODO: move this into the f64 package, once we work out the convention for
// matrix methods in that package: do they modify the receiver, take a dst
// pointer argument, or return a new value?
func invert(m *f64.Aff3) f64.Aff3 {
	m00 := +m[3*1+1]
	m01 := -m[3*0+1]
	m02 := +m[3*1+2]*m[3*0+1] - m[3*1+1]*m[3*0+2]
	m10 := -m[3*1+0]
	m11 := +m[3*0+0]
	m12 := +m[3*1+0]*m[3*0+2] - m[3*1+2]*m[3*0+0]

	det := m00*m11 - m10*m01

	return f64.Aff3{
		m00 / det,
		m01 / det,
		m02 / det,
		m10 / det,
		m11 / det,
		m12 / det,
	}
}

func matMul(p, q *f64.Aff3) f64.Aff3 {
	return f64.Aff3{
		p[3*0+0]*q[3*0+0] + p[3*0+1]*q[3*1+0],
		p[3*0+0]*q[3*0+1] + p[3*0+1]*q[3*1+1],
		p[3*0+0]*q[3*0+2] + p[3*0+1]*q[3*1+2] + p[3*0+2],
		p[3*1+0]*q[3*0+0] + p[3*1+1]*q[3*1+0],
		p[3*1+0]*q[3*0+1] + p[3*1+1]*q[3*1+1],
		p[3*1+0]*q[3*0+2] + p[3*1+1]*q[3*1+2] + p[3*1+2],
	}
}

// transformRect returns a rectangle dr that contains sr transformed by s2d.
func transformRect(s2d *f64.Aff3, sr *image.Rectangle) (dr image.Rectangle) {
	ps := [...]image.Point{
		{sr.Min.X, sr.Min.Y},
		{sr.Max.X, sr.Min.Y},
		{sr.Min.X, sr.Max.Y},
		{sr.Max.X, sr.Max.Y},
	}
	for i, p := range ps {
		sxf := float64(p.X)
		syf := float64(p.Y)
		dx := int(math.Floor(s2d[0]*sxf + s2d[1]*syf + s2d[2]))
		dy := int(math.Floor(s2d[3]*sxf + s2d[4]*syf + s2d[5]))

		// The +1 adjustments below are because an image.Rectangle is inclusive
		// on the low end but exclusive on the high end.

		if i == 0 {
			dr = image.Rectangle{
				Min: image.Point{dx + 0, dy + 0},
				Max: image.Point{dx + 1, dy + 1},
			}
			continue
		}

		if dr.Min.X > dx {
			dr.Min.X = dx
		}
		dx++
		if dr.Max.X < dx {
			dr.Max.X = dx
		}

		if dr.Min.Y > dy {
			dr.Min.Y = dy
		}
		dy++
		if dr.Max.Y < dy {
			dr.Max.Y = dy
		}
	}
	return dr
}

func clipAffectedDestRect(adr image.Rectangle, dstMask image.Image, dstMaskP image.Point) (image.Rectangle, image.Image) {
	if dstMask == nil {
		return adr, nil
	}
	if r, ok := dstMask.(image.Rectangle); ok {
		return adr.Intersect(r.Sub(dstMaskP)), nil
	}
	// TODO: clip to dstMask.Bounds() if the color model implies that out-of-bounds means 0 alpha?
	return adr, dstMask
}

func transform_Uniform(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Uniform, sr image.Rectangle, bias image.Point, op Op) {
	switch op {
	case Over:
		switch dst := dst.(type) {
		case *image.RGBA:
			pr, pg, pb, pa := src.C.RGBA()
			pa1 := (0xffff - pa) * 0x101

			for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
				dyf := float64(dr.Min.Y+int(dy)) + 0.5
				d := dst.PixOffset(dr.Min.X+adr.Min.X, dr.Min.Y+int(dy))
				for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
					dxf := float64(dr.Min.X+int(dx)) + 0.5
					sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
					sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
					if !(image.Point{sx0, sy0}).In(sr) {
						continue
					}
					dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
					dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
					dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
					dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
				}
			}

		default:
			pr, pg, pb, pa := src.C.RGBA()
			pa1 := 0xffff - pa
			dstColorRGBA64 := &color.RGBA64{}
			dstColor := color.Color(dstColorRGBA64)

			for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
				dyf := float64(dr.Min.Y+int(dy)) + 0.5
				for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
					dxf := float64(dr.Min.X+int(dx)) + 0.5
					sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
					sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
					if !(image.Point{sx0, sy0}).In(sr) {
						continue
					}
					qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
					dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
					dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
					dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
					dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
					dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
				}
			}
		}

	case Src:
		switch dst := dst.(type) {
		case *image.RGBA:
			pr, pg, pb, pa := src.C.RGBA()
			pr8 := uint8(pr >> 8)
			pg8 := uint8(pg >> 8)
			pb8 := uint8(pb >> 8)
			pa8 := uint8(pa >> 8)

			for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
				dyf := float64(dr.Min.Y+int(dy)) + 0.5
				d := dst.PixOffset(dr.Min.X+adr.Min.X, dr.Min.Y+int(dy))
				for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
					dxf := float64(dr.Min.X+int(dx)) + 0.5
					sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
					sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
					if !(image.Point{sx0, sy0}).In(sr) {
						continue
					}
					dst.Pix[d+0] = pr8
					dst.Pix[d+1] = pg8
					dst.Pix[d+2] = pb8
					dst.Pix[d+3] = pa8
				}
			}

		default:
			pr, pg, pb, pa := src.C.RGBA()
			dstColorRGBA64 := &color.RGBA64{
				uint16(pr),
				uint16(pg),
				uint16(pb),
				uint16(pa),
			}
			dstColor := color.Color(dstColorRGBA64)

			for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
				dyf := float64(dr.Min.Y+int(dy)) + 0.5
				for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
					dxf := float64(dr.Min.X+int(dx)) + 0.5
					sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
					sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
					if !(image.Point{sx0, sy0}).In(sr) {
						continue
					}
					dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
				}
			}
		}
	}
}

func opaque(m image.Image) bool {
	o, ok := m.(interface {
		Opaque() bool
	})
	return ok && o.Opaque()
}