decode.go 12 KB
Newer Older
zhangweiwei's avatar
init  
zhangweiwei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package vp8 implements a decoder for the VP8 lossy image format.
//
// The VP8 specification is RFC 6386.
package vp8 // import "golang.org/x/image/vp8"

// This file implements the top-level decoding algorithm.

import (
	"errors"
	"image"
	"io"
)

// limitReader wraps an io.Reader to read at most n bytes from it.
type limitReader struct {
	r io.Reader
	n int
}

// ReadFull reads exactly len(p) bytes into p.
func (r *limitReader) ReadFull(p []byte) error {
	if len(p) > r.n {
		return io.ErrUnexpectedEOF
	}
	n, err := io.ReadFull(r.r, p)
	r.n -= n
	return err
}

// FrameHeader is a frame header, as specified in section 9.1.
type FrameHeader struct {
	KeyFrame          bool
	VersionNumber     uint8
	ShowFrame         bool
	FirstPartitionLen uint32
	Width             int
	Height            int
	XScale            uint8
	YScale            uint8
}

const (
	nSegment     = 4
	nSegmentProb = 3
)

// segmentHeader holds segment-related header information.
type segmentHeader struct {
	useSegment     bool
	updateMap      bool
	relativeDelta  bool
	quantizer      [nSegment]int8
	filterStrength [nSegment]int8
	prob           [nSegmentProb]uint8
}

const (
	nRefLFDelta  = 4
	nModeLFDelta = 4
)

// filterHeader holds filter-related header information.
type filterHeader struct {
	simple          bool
	level           int8
	sharpness       uint8
	useLFDelta      bool
	refLFDelta      [nRefLFDelta]int8
	modeLFDelta     [nModeLFDelta]int8
	perSegmentLevel [nSegment]int8
}

// mb is the per-macroblock decode state. A decoder maintains mbw+1 of these
// as it is decoding macroblocks left-to-right and top-to-bottom: mbw for the
// macroblocks in the row above, and one for the macroblock to the left.
type mb struct {
	// pred is the predictor mode for the 4 bottom or right 4x4 luma regions.
	pred [4]uint8
	// nzMask is a mask of 8 bits: 4 for the bottom or right 4x4 luma regions,
	// and 2 + 2 for the bottom or right 4x4 chroma regions. A 1 bit indicates
	// that region has non-zero coefficients.
	nzMask uint8
	// nzY16 is a 0/1 value that is 1 if the macroblock used Y16 prediction and
	// had non-zero coefficients.
	nzY16 uint8
}

// Decoder decodes VP8 bitstreams into frames. Decoding one frame consists of
// calling Init, DecodeFrameHeader and then DecodeFrame in that order.
// A Decoder can be re-used to decode multiple frames.
type Decoder struct {
	// r is the input bitsream.
	r limitReader
	// scratch is a scratch buffer.
	scratch [8]byte
	// img is the YCbCr image to decode into.
	img *image.YCbCr
	// mbw and mbh are the number of 16x16 macroblocks wide and high the image is.
	mbw, mbh int
	// frameHeader is the frame header. When decoding multiple frames,
	// frames that aren't key frames will inherit the Width, Height,
	// XScale and YScale of the most recent key frame.
	frameHeader FrameHeader
	// Other headers.
	segmentHeader segmentHeader
	filterHeader  filterHeader
	// The image data is divided into a number of independent partitions.
	// There is 1 "first partition" and between 1 and 8 "other partitions"
	// for coefficient data.
	fp  partition
	op  [8]partition
	nOP int
	// Quantization factors.
	quant [nSegment]quant
	// DCT/WHT coefficient decoding probabilities.
	tokenProb   [nPlane][nBand][nContext][nProb]uint8
	useSkipProb bool
	skipProb    uint8
	// Loop filter parameters.
	filterParams      [nSegment][2]filterParam
	perMBFilterParams []filterParam

	// The eight fields below relate to the current macroblock being decoded.
	//
	// Segment-based adjustments.
	segment int
	// Per-macroblock state for the macroblock immediately left of and those
	// macroblocks immediately above the current macroblock.
	leftMB mb
	upMB   []mb
	// Bitmasks for which 4x4 regions of coeff contain non-zero coefficients.
	nzDCMask, nzACMask uint32
	// Predictor modes.
	usePredY16 bool // The libwebp C code calls this !is_i4x4_.
	predY16    uint8
	predC8     uint8
	predY4     [4][4]uint8

	// The two fields below form a workspace for reconstructing a macroblock.
	// Their specific sizes are documented in reconstruct.go.
	coeff [1*16*16 + 2*8*8 + 1*4*4]int16
	ybr   [1 + 16 + 1 + 8][32]uint8
}

// NewDecoder returns a new Decoder.
func NewDecoder() *Decoder {
	return &Decoder{}
}

// Init initializes the decoder to read at most n bytes from r.
func (d *Decoder) Init(r io.Reader, n int) {
	d.r = limitReader{r, n}
}

// DecodeFrameHeader decodes the frame header.
func (d *Decoder) DecodeFrameHeader() (fh FrameHeader, err error) {
	// All frame headers are at least 3 bytes long.
	b := d.scratch[:3]
	if err = d.r.ReadFull(b); err != nil {
		return
	}
	d.frameHeader.KeyFrame = (b[0] & 1) == 0
	d.frameHeader.VersionNumber = (b[0] >> 1) & 7
	d.frameHeader.ShowFrame = (b[0]>>4)&1 == 1
	d.frameHeader.FirstPartitionLen = uint32(b[0])>>5 | uint32(b[1])<<3 | uint32(b[2])<<11
	if !d.frameHeader.KeyFrame {
		return d.frameHeader, nil
	}
	// Frame headers for key frames are an additional 7 bytes long.
	b = d.scratch[:7]
	if err = d.r.ReadFull(b); err != nil {
		return
	}
	// Check the magic sync code.
	if b[0] != 0x9d || b[1] != 0x01 || b[2] != 0x2a {
		err = errors.New("vp8: invalid format")
		return
	}
	d.frameHeader.Width = int(b[4]&0x3f)<<8 | int(b[3])
	d.frameHeader.Height = int(b[6]&0x3f)<<8 | int(b[5])
	d.frameHeader.XScale = b[4] >> 6
	d.frameHeader.YScale = b[6] >> 6
	d.mbw = (d.frameHeader.Width + 0x0f) >> 4
	d.mbh = (d.frameHeader.Height + 0x0f) >> 4
	d.segmentHeader = segmentHeader{
		prob: [3]uint8{0xff, 0xff, 0xff},
	}
	d.tokenProb = defaultTokenProb
	d.segment = 0
	return d.frameHeader, nil
}

// ensureImg ensures that d.img is large enough to hold the decoded frame.
func (d *Decoder) ensureImg() {
	if d.img != nil {
		p0, p1 := d.img.Rect.Min, d.img.Rect.Max
		if p0.X == 0 && p0.Y == 0 && p1.X >= 16*d.mbw && p1.Y >= 16*d.mbh {
			return
		}
	}
	m := image.NewYCbCr(image.Rect(0, 0, 16*d.mbw, 16*d.mbh), image.YCbCrSubsampleRatio420)
	d.img = m.SubImage(image.Rect(0, 0, d.frameHeader.Width, d.frameHeader.Height)).(*image.YCbCr)
	d.perMBFilterParams = make([]filterParam, d.mbw*d.mbh)
	d.upMB = make([]mb, d.mbw)
}

// parseSegmentHeader parses the segment header, as specified in section 9.3.
func (d *Decoder) parseSegmentHeader() {
	d.segmentHeader.useSegment = d.fp.readBit(uniformProb)
	if !d.segmentHeader.useSegment {
		d.segmentHeader.updateMap = false
		return
	}
	d.segmentHeader.updateMap = d.fp.readBit(uniformProb)
	if d.fp.readBit(uniformProb) {
		d.segmentHeader.relativeDelta = !d.fp.readBit(uniformProb)
		for i := range d.segmentHeader.quantizer {
			d.segmentHeader.quantizer[i] = int8(d.fp.readOptionalInt(uniformProb, 7))
		}
		for i := range d.segmentHeader.filterStrength {
			d.segmentHeader.filterStrength[i] = int8(d.fp.readOptionalInt(uniformProb, 6))
		}
	}
	if !d.segmentHeader.updateMap {
		return
	}
	for i := range d.segmentHeader.prob {
		if d.fp.readBit(uniformProb) {
			d.segmentHeader.prob[i] = uint8(d.fp.readUint(uniformProb, 8))
		} else {
			d.segmentHeader.prob[i] = 0xff
		}
	}
}

// parseFilterHeader parses the filter header, as specified in section 9.4.
func (d *Decoder) parseFilterHeader() {
	d.filterHeader.simple = d.fp.readBit(uniformProb)
	d.filterHeader.level = int8(d.fp.readUint(uniformProb, 6))
	d.filterHeader.sharpness = uint8(d.fp.readUint(uniformProb, 3))
	d.filterHeader.useLFDelta = d.fp.readBit(uniformProb)
	if d.filterHeader.useLFDelta && d.fp.readBit(uniformProb) {
		for i := range d.filterHeader.refLFDelta {
			d.filterHeader.refLFDelta[i] = int8(d.fp.readOptionalInt(uniformProb, 6))
		}
		for i := range d.filterHeader.modeLFDelta {
			d.filterHeader.modeLFDelta[i] = int8(d.fp.readOptionalInt(uniformProb, 6))
		}
	}
	if d.filterHeader.level == 0 {
		return
	}
	if d.segmentHeader.useSegment {
		for i := range d.filterHeader.perSegmentLevel {
			strength := d.segmentHeader.filterStrength[i]
			if d.segmentHeader.relativeDelta {
				strength += d.filterHeader.level
			}
			d.filterHeader.perSegmentLevel[i] = strength
		}
	} else {
		d.filterHeader.perSegmentLevel[0] = d.filterHeader.level
	}
	d.computeFilterParams()
}

// parseOtherPartitions parses the other partitions, as specified in section 9.5.
func (d *Decoder) parseOtherPartitions() error {
	const maxNOP = 1 << 3
	var partLens [maxNOP]int
	d.nOP = 1 << d.fp.readUint(uniformProb, 2)

	// The final partition length is implied by the remaining chunk data
	// (d.r.n) and the other d.nOP-1 partition lengths. Those d.nOP-1 partition
	// lengths are stored as 24-bit uints, i.e. up to 16 MiB per partition.
	n := 3 * (d.nOP - 1)
	partLens[d.nOP-1] = d.r.n - n
	if partLens[d.nOP-1] < 0 {
		return io.ErrUnexpectedEOF
	}
	if n > 0 {
		buf := make([]byte, n)
		if err := d.r.ReadFull(buf); err != nil {
			return err
		}
		for i := 0; i < d.nOP-1; i++ {
			pl := int(buf[3*i+0]) | int(buf[3*i+1])<<8 | int(buf[3*i+2])<<16
			if pl > partLens[d.nOP-1] {
				return io.ErrUnexpectedEOF
			}
			partLens[i] = pl
			partLens[d.nOP-1] -= pl
		}
	}

	// We check if the final partition length can also fit into a 24-bit uint.
	// Strictly speaking, this isn't part of the spec, but it guards against a
	// malicious WEBP image that is too large to ReadFull the encoded DCT
	// coefficients into memory, whether that's because the actual WEBP file is
	// too large, or whether its RIFF metadata lists too large a chunk.
	if 1<<24 <= partLens[d.nOP-1] {
		return errors.New("vp8: too much data to decode")
	}

	buf := make([]byte, d.r.n)
	if err := d.r.ReadFull(buf); err != nil {
		return err
	}
	for i, pl := range partLens {
		if i == d.nOP {
			break
		}
		d.op[i].init(buf[:pl])
		buf = buf[pl:]
	}
	return nil
}

// parseOtherHeaders parses header information other than the frame header.
func (d *Decoder) parseOtherHeaders() error {
	// Initialize and parse the first partition.
	firstPartition := make([]byte, d.frameHeader.FirstPartitionLen)
	if err := d.r.ReadFull(firstPartition); err != nil {
		return err
	}
	d.fp.init(firstPartition)
	if d.frameHeader.KeyFrame {
		// Read and ignore the color space and pixel clamp values. They are
		// specified in section 9.2, but are unimplemented.
		d.fp.readBit(uniformProb)
		d.fp.readBit(uniformProb)
	}
	d.parseSegmentHeader()
	d.parseFilterHeader()
	if err := d.parseOtherPartitions(); err != nil {
		return err
	}
	d.parseQuant()
	if !d.frameHeader.KeyFrame {
		// Golden and AltRef frames are specified in section 9.7.
		// TODO(nigeltao): implement. Note that they are only used for video, not still images.
		return errors.New("vp8: Golden / AltRef frames are not implemented")
	}
	// Read and ignore the refreshLastFrameBuffer bit, specified in section 9.8.
	// It applies only to video, and not still images.
	d.fp.readBit(uniformProb)
	d.parseTokenProb()
	d.useSkipProb = d.fp.readBit(uniformProb)
	if d.useSkipProb {
		d.skipProb = uint8(d.fp.readUint(uniformProb, 8))
	}
	if d.fp.unexpectedEOF {
		return io.ErrUnexpectedEOF
	}
	return nil
}

// DecodeFrame decodes the frame and returns it as an YCbCr image.
// The image's contents are valid up until the next call to Decoder.Init.
func (d *Decoder) DecodeFrame() (*image.YCbCr, error) {
	d.ensureImg()
	if err := d.parseOtherHeaders(); err != nil {
		return nil, err
	}
	// Reconstruct the rows.
	for mbx := 0; mbx < d.mbw; mbx++ {
		d.upMB[mbx] = mb{}
	}
	for mby := 0; mby < d.mbh; mby++ {
		d.leftMB = mb{}
		for mbx := 0; mbx < d.mbw; mbx++ {
			skip := d.reconstruct(mbx, mby)
			fs := d.filterParams[d.segment][btou(!d.usePredY16)]
			fs.inner = fs.inner || !skip
			d.perMBFilterParams[d.mbw*mby+mbx] = fs
		}
	}
	if d.fp.unexpectedEOF {
		return nil, io.ErrUnexpectedEOF
	}
	for i := 0; i < d.nOP; i++ {
		if d.op[i].unexpectedEOF {
			return nil, io.ErrUnexpectedEOF
		}
	}
	// Apply the loop filter.
	//
	// Even if we are using per-segment levels, section 15 says that "loop
	// filtering must be skipped entirely if loop_filter_level at either the
	// frame header level or macroblock override level is 0".
	if d.filterHeader.level != 0 {
		if d.filterHeader.simple {
			d.simpleFilter()
		} else {
			d.normalFilter()
		}
	}
	return d.img, nil
}