reconstruct.go 13.3 KB
Newer Older
zhangweiwei's avatar
init  
zhangweiwei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package vp8

// This file implements decoding DCT/WHT residual coefficients and
// reconstructing YCbCr data equal to predicted values plus residuals.
//
// There are 1*16*16 + 2*8*8 + 1*4*4 coefficients per macroblock:
//	- 1*16*16 luma DCT coefficients,
//	- 2*8*8 chroma DCT coefficients, and
//	- 1*4*4 luma WHT coefficients.
// Coefficients are read in lots of 16, and the later coefficients in each lot
// are often zero.
//
// The YCbCr data consists of 1*16*16 luma values and 2*8*8 chroma values,
// plus previously decoded values along the top and left borders. The combined
// values are laid out as a [1+16+1+8][32]uint8 so that vertically adjacent
// samples are 32 bytes apart. In detail, the layout is:
//
//	0 1 2 3 4 5 6 7  8 9 0 1 2 3 4 5  6 7 8 9 0 1 2 3  4 5 6 7 8 9 0 1
//	. . . . . . . a  b b b b b b b b  b b b b b b b b  c c c c . . . .	0
//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	1
//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	2
//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	3
//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  c c c c . . . .	4
//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	5
//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	6
//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	7
//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  c c c c . . . .	8
//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	9
//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	10
//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	11
//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  c c c c . . . .	12
//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	13
//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	14
//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	15
//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	16
//	. . . . . . . e  f f f f f f f f  . . . . . . . g  h h h h h h h h	17
//	. . . . . . . i  B B B B B B B B  . . . . . . . j  R R R R R R R R	18
//	. . . . . . . i  B B B B B B B B  . . . . . . . j  R R R R R R R R	19
//	. . . . . . . i  B B B B B B B B  . . . . . . . j  R R R R R R R R	20
//	. . . . . . . i  B B B B B B B B  . . . . . . . j  R R R R R R R R	21
//	. . . . . . . i  B B B B B B B B  . . . . . . . j  R R R R R R R R	22
//	. . . . . . . i  B B B B B B B B  . . . . . . . j  R R R R R R R R	23
//	. . . . . . . i  B B B B B B B B  . . . . . . . j  R R R R R R R R	24
//	. . . . . . . i  B B B B B B B B  . . . . . . . j  R R R R R R R R	25
//
// Y, B and R are the reconstructed luma (Y) and chroma (B, R) values.
// The Y values are predicted (either as one 16x16 region or 16 4x4 regions)
// based on the row above's Y values (some combination of {abc} or {dYC}) and
// the column left's Y values (either {ad} or {bY}). Similarly, B and R values
// are predicted on the row above and column left of their respective 8x8
// region: {efi} for B, {ghj} for R.
//
// For uppermost macroblocks (i.e. those with mby == 0), the {abcefgh} values
// are initialized to 0x81. Otherwise, they are copied from the bottom row of
// the macroblock above. The {c} values are then duplicated from row 0 to rows
// 4, 8 and 12 of the ybr workspace.
// Similarly, for leftmost macroblocks (i.e. those with mbx == 0), the {adeigj}
// values are initialized to 0x7f. Otherwise, they are copied from the right
// column of the macroblock to the left.
// For the top-left macroblock (with mby == 0 && mbx == 0), {aeg} is 0x81.
//
// When moving from one macroblock to the next horizontally, the {adeigj}
// values can simply be copied from the workspace to itself, shifted by 8 or
// 16 columns. When moving from one macroblock to the next vertically,
// filtering can occur and hence the row values have to be copied from the
// post-filtered image instead of the pre-filtered workspace.

const (
	bCoeffBase   = 1*16*16 + 0*8*8
	rCoeffBase   = 1*16*16 + 1*8*8
	whtCoeffBase = 1*16*16 + 2*8*8
)

const (
	ybrYX = 8
	ybrYY = 1
	ybrBX = 8
	ybrBY = 18
	ybrRX = 24
	ybrRY = 18
)

// prepareYBR prepares the {abcdefghij} elements of ybr.
func (d *Decoder) prepareYBR(mbx, mby int) {
	if mbx == 0 {
		for y := 0; y < 17; y++ {
			d.ybr[y][7] = 0x81
		}
		for y := 17; y < 26; y++ {
			d.ybr[y][7] = 0x81
			d.ybr[y][23] = 0x81
		}
	} else {
		for y := 0; y < 17; y++ {
			d.ybr[y][7] = d.ybr[y][7+16]
		}
		for y := 17; y < 26; y++ {
			d.ybr[y][7] = d.ybr[y][15]
			d.ybr[y][23] = d.ybr[y][31]
		}
	}
	if mby == 0 {
		for x := 7; x < 28; x++ {
			d.ybr[0][x] = 0x7f
		}
		for x := 7; x < 16; x++ {
			d.ybr[17][x] = 0x7f
		}
		for x := 23; x < 32; x++ {
			d.ybr[17][x] = 0x7f
		}
	} else {
		for i := 0; i < 16; i++ {
			d.ybr[0][8+i] = d.img.Y[(16*mby-1)*d.img.YStride+16*mbx+i]
		}
		for i := 0; i < 8; i++ {
			d.ybr[17][8+i] = d.img.Cb[(8*mby-1)*d.img.CStride+8*mbx+i]
		}
		for i := 0; i < 8; i++ {
			d.ybr[17][24+i] = d.img.Cr[(8*mby-1)*d.img.CStride+8*mbx+i]
		}
		if mbx == d.mbw-1 {
			for i := 16; i < 20; i++ {
				d.ybr[0][8+i] = d.img.Y[(16*mby-1)*d.img.YStride+16*mbx+15]
			}
		} else {
			for i := 16; i < 20; i++ {
				d.ybr[0][8+i] = d.img.Y[(16*mby-1)*d.img.YStride+16*mbx+i]
			}
		}
	}
	for y := 4; y < 16; y += 4 {
		d.ybr[y][24] = d.ybr[0][24]
		d.ybr[y][25] = d.ybr[0][25]
		d.ybr[y][26] = d.ybr[0][26]
		d.ybr[y][27] = d.ybr[0][27]
	}
}

// btou converts a bool to a 0/1 value.
func btou(b bool) uint8 {
	if b {
		return 1
	}
	return 0
}

// pack packs four 0/1 values into four bits of a uint32.
func pack(x [4]uint8, shift int) uint32 {
	u := uint32(x[0])<<0 | uint32(x[1])<<1 | uint32(x[2])<<2 | uint32(x[3])<<3
	return u << uint(shift)
}

// unpack unpacks four 0/1 values from a four-bit value.
var unpack = [16][4]uint8{
	{0, 0, 0, 0},
	{1, 0, 0, 0},
	{0, 1, 0, 0},
	{1, 1, 0, 0},
	{0, 0, 1, 0},
	{1, 0, 1, 0},
	{0, 1, 1, 0},
	{1, 1, 1, 0},
	{0, 0, 0, 1},
	{1, 0, 0, 1},
	{0, 1, 0, 1},
	{1, 1, 0, 1},
	{0, 0, 1, 1},
	{1, 0, 1, 1},
	{0, 1, 1, 1},
	{1, 1, 1, 1},
}

var (
	// The mapping from 4x4 region position to band is specified in section 13.3.
	bands = [17]uint8{0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 0}
	// Category probabilties are specified in section 13.2.
	// Decoding categories 1 and 2 are done inline.
	cat3456 = [4][12]uint8{
		{173, 148, 140, 0, 0, 0, 0, 0, 0, 0, 0, 0},
		{176, 155, 140, 135, 0, 0, 0, 0, 0, 0, 0, 0},
		{180, 157, 141, 134, 130, 0, 0, 0, 0, 0, 0, 0},
		{254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0},
	}
	// The zigzag order is:
	//	0  1  5  6
	//	2  4  7 12
	//	3  8 11 13
	//	9 10 14 15
	zigzag = [16]uint8{0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15}
)

// parseResiduals4 parses a 4x4 region of residual coefficients, as specified
// in section 13.3, and returns a 0/1 value indicating whether there was at
// least one non-zero coefficient.
// r is the partition to read bits from.
// plane and context describe which token probability table to use. context is
// either 0, 1 or 2, and equals how many of the macroblock left and macroblock
// above have non-zero coefficients.
// quant are the DC/AC quantization factors.
// skipFirstCoeff is whether the DC coefficient has already been parsed.
// coeffBase is the base index of d.coeff to write to.
func (d *Decoder) parseResiduals4(r *partition, plane int, context uint8, quant [2]uint16, skipFirstCoeff bool, coeffBase int) uint8 {
	prob, n := &d.tokenProb[plane], 0
	if skipFirstCoeff {
		n = 1
	}
	p := prob[bands[n]][context]
	if !r.readBit(p[0]) {
		return 0
	}
	for n != 16 {
		n++
		if !r.readBit(p[1]) {
			p = prob[bands[n]][0]
			continue
		}
		var v uint32
		if !r.readBit(p[2]) {
			v = 1
			p = prob[bands[n]][1]
		} else {
			if !r.readBit(p[3]) {
				if !r.readBit(p[4]) {
					v = 2
				} else {
					v = 3 + r.readUint(p[5], 1)
				}
			} else if !r.readBit(p[6]) {
				if !r.readBit(p[7]) {
					// Category 1.
					v = 5 + r.readUint(159, 1)
				} else {
					// Category 2.
					v = 7 + 2*r.readUint(165, 1) + r.readUint(145, 1)
				}
			} else {
				// Categories 3, 4, 5 or 6.
				b1 := r.readUint(p[8], 1)
				b0 := r.readUint(p[9+b1], 1)
				cat := 2*b1 + b0
				tab := &cat3456[cat]
				v = 0
				for i := 0; tab[i] != 0; i++ {
					v *= 2
					v += r.readUint(tab[i], 1)
				}
				v += 3 + (8 << cat)
			}
			p = prob[bands[n]][2]
		}
		z := zigzag[n-1]
		c := int32(v) * int32(quant[btou(z > 0)])
		if r.readBit(uniformProb) {
			c = -c
		}
		d.coeff[coeffBase+int(z)] = int16(c)
		if n == 16 || !r.readBit(p[0]) {
			return 1
		}
	}
	return 1
}

// parseResiduals parses the residuals and returns whether inner loop filtering
// should be skipped for this macroblock.
func (d *Decoder) parseResiduals(mbx, mby int) (skip bool) {
	partition := &d.op[mby&(d.nOP-1)]
	plane := planeY1SansY2
	quant := &d.quant[d.segment]

	// Parse the DC coefficient of each 4x4 luma region.
	if d.usePredY16 {
		nz := d.parseResiduals4(partition, planeY2, d.leftMB.nzY16+d.upMB[mbx].nzY16, quant.y2, false, whtCoeffBase)
		d.leftMB.nzY16 = nz
		d.upMB[mbx].nzY16 = nz
		d.inverseWHT16()
		plane = planeY1WithY2
	}

	var (
		nzDC, nzAC         [4]uint8
		nzDCMask, nzACMask uint32
		coeffBase          int
	)

	// Parse the luma coefficients.
	lnz := unpack[d.leftMB.nzMask&0x0f]
	unz := unpack[d.upMB[mbx].nzMask&0x0f]
	for y := 0; y < 4; y++ {
		nz := lnz[y]
		for x := 0; x < 4; x++ {
			nz = d.parseResiduals4(partition, plane, nz+unz[x], quant.y1, d.usePredY16, coeffBase)
			unz[x] = nz
			nzAC[x] = nz
			nzDC[x] = btou(d.coeff[coeffBase] != 0)
			coeffBase += 16
		}
		lnz[y] = nz
		nzDCMask |= pack(nzDC, y*4)
		nzACMask |= pack(nzAC, y*4)
	}
	lnzMask := pack(lnz, 0)
	unzMask := pack(unz, 0)

	// Parse the chroma coefficients.
	lnz = unpack[d.leftMB.nzMask>>4]
	unz = unpack[d.upMB[mbx].nzMask>>4]
	for c := 0; c < 4; c += 2 {
		for y := 0; y < 2; y++ {
			nz := lnz[y+c]
			for x := 0; x < 2; x++ {
				nz = d.parseResiduals4(partition, planeUV, nz+unz[x+c], quant.uv, false, coeffBase)
				unz[x+c] = nz
				nzAC[y*2+x] = nz
				nzDC[y*2+x] = btou(d.coeff[coeffBase] != 0)
				coeffBase += 16
			}
			lnz[y+c] = nz
		}
		nzDCMask |= pack(nzDC, 16+c*2)
		nzACMask |= pack(nzAC, 16+c*2)
	}
	lnzMask |= pack(lnz, 4)
	unzMask |= pack(unz, 4)

	// Save decoder state.
	d.leftMB.nzMask = uint8(lnzMask)
	d.upMB[mbx].nzMask = uint8(unzMask)
	d.nzDCMask = nzDCMask
	d.nzACMask = nzACMask

	// Section 15.1 of the spec says that "Steps 2 and 4 [of the loop filter]
	// are skipped... [if] there is no DCT coefficient coded for the whole
	// macroblock."
	return nzDCMask == 0 && nzACMask == 0
}

// reconstructMacroblock applies the predictor functions and adds the inverse-
// DCT transformed residuals to recover the YCbCr data.
func (d *Decoder) reconstructMacroblock(mbx, mby int) {
	if d.usePredY16 {
		p := checkTopLeftPred(mbx, mby, d.predY16)
		predFunc16[p](d, 1, 8)
		for j := 0; j < 4; j++ {
			for i := 0; i < 4; i++ {
				n := 4*j + i
				y := 4*j + 1
				x := 4*i + 8
				mask := uint32(1) << uint(n)
				if d.nzACMask&mask != 0 {
					d.inverseDCT4(y, x, 16*n)
				} else if d.nzDCMask&mask != 0 {
					d.inverseDCT4DCOnly(y, x, 16*n)
				}
			}
		}
	} else {
		for j := 0; j < 4; j++ {
			for i := 0; i < 4; i++ {
				n := 4*j + i
				y := 4*j + 1
				x := 4*i + 8
				predFunc4[d.predY4[j][i]](d, y, x)
				mask := uint32(1) << uint(n)
				if d.nzACMask&mask != 0 {
					d.inverseDCT4(y, x, 16*n)
				} else if d.nzDCMask&mask != 0 {
					d.inverseDCT4DCOnly(y, x, 16*n)
				}
			}
		}
	}
	p := checkTopLeftPred(mbx, mby, d.predC8)
	predFunc8[p](d, ybrBY, ybrBX)
	if d.nzACMask&0x0f0000 != 0 {
		d.inverseDCT8(ybrBY, ybrBX, bCoeffBase)
	} else if d.nzDCMask&0x0f0000 != 0 {
		d.inverseDCT8DCOnly(ybrBY, ybrBX, bCoeffBase)
	}
	predFunc8[p](d, ybrRY, ybrRX)
	if d.nzACMask&0xf00000 != 0 {
		d.inverseDCT8(ybrRY, ybrRX, rCoeffBase)
	} else if d.nzDCMask&0xf00000 != 0 {
		d.inverseDCT8DCOnly(ybrRY, ybrRX, rCoeffBase)
	}
}

// reconstruct reconstructs one macroblock and returns whether inner loop
// filtering should be skipped for it.
func (d *Decoder) reconstruct(mbx, mby int) (skip bool) {
	if d.segmentHeader.updateMap {
		if !d.fp.readBit(d.segmentHeader.prob[0]) {
			d.segment = int(d.fp.readUint(d.segmentHeader.prob[1], 1))
		} else {
			d.segment = int(d.fp.readUint(d.segmentHeader.prob[2], 1)) + 2
		}
	}
	if d.useSkipProb {
		skip = d.fp.readBit(d.skipProb)
	}
	// Prepare the workspace.
	for i := range d.coeff {
		d.coeff[i] = 0
	}
	d.prepareYBR(mbx, mby)
	// Parse the predictor modes.
	d.usePredY16 = d.fp.readBit(145)
	if d.usePredY16 {
		d.parsePredModeY16(mbx)
	} else {
		d.parsePredModeY4(mbx)
	}
	d.parsePredModeC8()
	// Parse the residuals.
	if !skip {
		skip = d.parseResiduals(mbx, mby)
	} else {
		if d.usePredY16 {
			d.leftMB.nzY16 = 0
			d.upMB[mbx].nzY16 = 0
		}
		d.leftMB.nzMask = 0
		d.upMB[mbx].nzMask = 0
		d.nzDCMask = 0
		d.nzACMask = 0
	}
	// Reconstruct the YCbCr data and copy it to the image.
	d.reconstructMacroblock(mbx, mby)
	for i, y := (mby*d.img.YStride+mbx)*16, 0; y < 16; i, y = i+d.img.YStride, y+1 {
		copy(d.img.Y[i:i+16], d.ybr[ybrYY+y][ybrYX:ybrYX+16])
	}
	for i, y := (mby*d.img.CStride+mbx)*8, 0; y < 8; i, y = i+d.img.CStride, y+1 {
		copy(d.img.Cb[i:i+8], d.ybr[ybrBY+y][ybrBX:ybrBX+8])
		copy(d.img.Cr[i:i+8], d.ybr[ybrRY+y][ybrRX:ybrRX+8])
	}
	return skip
}